更多“口袋中有5个白球,3个黑球,从中任取两个,恰好颜色不相同的概率为().”相关问题
  • 第1题:

    在一个盒子里装有均匀的已编有不同号码的五个白球和七个黑球,则

    从中任取一球是黑球的概率为________。

    A.5/12

    B.7/12

    C.5/33

    D.7/22


    正确答案:B
    解析:盒中共12个球,任取一个有12种取法,取到黑球有7种可能。

  • 第2题:

    在一个口袋中有10个黑球、6个白球、4个红球,至少从中取出多少个球才能保证其中有白球?

    A.14 B.15 C.17 D.18


    正确答案:B

    抽屉原理,最坏的情况是10个黑球和4个白球都拿出来了,最后第15次拿到的肯定是白球。

  • 第3题:

    袋子中有9个球(4白,5黑),现从中任意取两个,则两个均为白球的概率是(65)。

    A.1/8

    B.1/6

    C.4/9

    D.5/9


    正确答案:B
    解析:本题考查概率运算。题目中告诉我们袋子中有9个球,其中4个白球,5个黑球。要求从中任意取两个,第一次取球取到白球的概率是4/9,如果第一次取到的是白球,那么袋中还剩8个球,这8个球中只有3个白球,因此,第二次取到白球的概率是3/8。所以,取到两个球均为白球的概率应该是4/9×3/8=1/6。另一种方法是:基本事件总数为,且每个事件为等可能性,取两个白球事件的基本事件数为,取到两个球均为白球的概率为

  • 第4题:

    在一个口袋中有10个黑球、6个白球、4个红球,至少从中取出多少个球才能保证其中有白球?

    A.14

    B.15

    C.17

    D.18


    正确答案:B
    [答案] B。解析:抽屉原理,最坏的情况是10个黑球和4个红球都拿出来了,第15次拿到的肯定是白球。

  • 第5题:

    袋中装有大小相同的12个球,其中5个白球和7个黑球,从中任取3个球,求
    这3个球中至少有1个黑球的概率.


    答案:
    解析:
    此题利用对立事件的概率计算较为简捷,

  • 第6题:

    设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为_______.


    答案:
    解析:
    设A1={第一次取红球),A2={第一次取白球),B={第二次取红球),  


      

  • 第7题:

    袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:
      (1)两个球中一个是红球一个是白球;
      (2)两个球颜色相同.


    答案:
    解析:
    【解】(1)令A={抽取的两个球中一个是红球一个是白球},则.
    (2)令B={抽取的两个球颜色相同},则

  • 第8题:

    一个口袋中有7个红球3个白球,从袋中任取一球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设AB分别表演一、二次取红球,则有P(AB)=P(A)P(B|A)=7/106/9=7/15。

  • 第9题:

    在一个盒子里装有均匀的已编有不同号码的五个白球和七个黑球,则:
    从中任取两球都是黑球的概率为( )。
    A. 5/33 B. 7/22 C. 5/12 D. 7/12


    答案:B
    解析:

  • 第10题:

    袋中有大小相同的红球4只,黑球3只,从中随机一次抽取2只,则此两球颜色不同的概率为()。


    正确答案:4/7

  • 第11题:

    袋中有大小相同的黑球7只,白球3只,每次从中任取一只,有放回抽取,记首次抽到黑球时抽取的次数为X,则P{X=10}=()。


    正确答案:0.39*0.7

  • 第12题:

    单选题
    袋中有5个白球 ,n个红球,从中任取一个恰为红球的概率为2/3,则n为(  )
    A

    16  

    B

    10  

    C

    20   

    D

    18


    正确答案: B
    解析: 根据概率的定义:P=n/5+n=2/3

  • 第13题:

    从中任取两球都是白球的概率为________。

    A.5/12

    B.7/12

    C.5/33

    D.7/22


    正确答案:C

  • 第14题:

    袋中有5个白球和3个黑球,从中任取两球,则取得的两球颜色相同的概率为13/28。()


    正确答案:对

  • 第15题:

    (3)一个口袋内装有除颜色外其他都相同的6个白球和4个红球,从中任意摸出2个,求:A、2个都是白球的概率;B、2个都是红球的概率;C、一个白球,一个红球的概率。


    正确答案:
              

  • 第16题:

    有白球和黑球各3个且白球和黑球中各有两个球分别印有1、2两个号码。现将这6个球放入袋子里,充分搅匀后有放回地每次摸取一个球,则前两次恰好摸到同编号的异色球的概率为( )。


    答案:D
    解析:
    第一次取到有编号的球的概率为,假设取到白色1号球,则第二次必须 取到黑色1号球,其概率为。因此前两次恰好摸到同编号的异色球的概率为。。

  • 第17题:

    一个口袋内有4个不同的红球,6个不同的白球.
    (1)从中任取4个球,红球的个数不比白球少的取法有多少种?
    (2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?


    答案:
    解析:
    解:(1)由题意知本题是一个分类计数问题.将取出4个球分成三类情况:取4个红

  • 第18题:

    有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.


    答案:
    解析:

  • 第19题:

    口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球的概率是______.


    答案:
    解析:

  • 第20题:

    一个口袋中有7个红球3个白球,从袋中任取一任球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设A、B分别表示第一、二次红球,则有P(AB)=P(A)P(B|A=7/106/9=7/15。

  • 第21题:

    在一个盒子里装有均匀的已编有不同号码的五个白球和七个黑球,则:
    从中任取一球是白球的概率为( )。
    A. 5/33 B. 7/22 C. 5/12 D. 7/12


    答案:C
    解析:
    盒中共12个球,任取一个有12种取法,而取到白球有5种可能。所以任取一球是白球的概率为5/12。

  • 第22题:

    袋中有4个白球2个黑球,今从中任取3个球,则至少一个黑球的概率为()

    • A、4/5
    • B、1
    • C、1/5
    • D、1/3

    正确答案:A

  • 第23题:

    单选题
    一只盒子中有红球m个,白球10个,黑球n个,每个球除颜色外其他都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是(  ).
    A

    m=4,n=6

    B

    m=5,n=5

    C

    m+n=5

    D

    m+n=10


    正确答案: B
    解析:
    因为从中任取一个球,取得白球的概率与不是白球的概率相同.所以白球的个数与不是白球的球的个数相等,所以m+n=10.

  • 第24题:

    填空题
    甲袋中有5只白球,5只红球,15只黑球,乙袋中有10只白球,5只红球,10只黑球,从两袋中各取一球,则两球颜色相同的概率为____。

    正确答案: 9/25
    解析:
    分别记白、红、黑为第1、2、3种颜色,设Ai:“从甲袋中取出的是第i种颜色的球”;Bi:“从乙袋中取出的是第i种颜色的球”;C:“取出的球的颜色相同”。则C=A1B1∪A2B2∪A3B3
    故P(C)=P(A1B1∪A2B2∪A3B3)=P(A1B1)+P(A2B2)+P(A3B3)=P(A1)P(B1)+P(A2)P(B2)+P(A3)P(B3)=(5/25)×(10/25)+(5/25)×(5/25)+(15/25)×(10/25)=9/25。