更多“函数y=f(x)在点x=x0处左右极限都存在并且相等,是它在该点有极限的()”相关问题
  • 第1题:

    f(x)在点x0处的左、右极限存在且相等是f(x)在点x0处连续的(  )。

    A、 必要非充分的条件
    B、 充分非必要的条件
    C、 充分且必要的条件
    D、 既非充分又非必要的条件

    答案:A
    解析:
    函数f(x)在点x0处连续的充要条件为:在该点处的左右极限存在且相等,并等于函数在该点处的函数值,即:



    故f(x)在点x0处的左、右极限存在且相等,并不能得出f(x)在点x0处连续,也可能是可去间断点,为必要非充分条件。

  • 第2题:

    函数y=f(x) 在点x=x0处取得极小值,则必有:
    A. f'(x0)=0
    B.f''(x0)>0
    C. f'(x0)=0且f''(x0)>0
    D.f'(x0)=0或导数不存在


    答案:D
    解析:
    提示:已知y=f(x)在x=x0处取得极小值,但在题中f(x)是否具有一阶、二阶导数,均未说明,从而答案A、B、C就不一定成立。答案D包含了在x=x0可导或不可导两种情况,如y= x 在x=0处导数不存在,但函数y= x 在x=0取得极小值。

  • 第3题:

    下列命题正确的是()

    A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
    B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
    C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
    D.若函数f(x)在点x0处连续,则f'(x0)一定存在

    答案:C
    解析:
    根据函数在点x0处取极值的必要条件的定理,可知选项C是正确的.

  • 第4题:

    对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?

    • A、必要条件而非充分条件
    • B、充分条件而非必要条件
    • C、充分必要条件
    • D、既非充分又非必要条件

    正确答案:D

  • 第5题:

    下列结论不正确的是()。

    • A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续
    • B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导
    • C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微
    • D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

    正确答案:C

  • 第6题:

    若x点是函数的第二类间断点,则在x点处函数()。

    • A、极限值不等于这点的函数值
    • B、左右极限都存在
    • C、左右极限至少有一个不存在
    • D、没有定义

    正确答案:C

  • 第7题:

    下列结论不正确的是()。

    • A、y=f(x)在点x0处可微,则f(x)在点x0处连续
    • B、y=f(x)在点x0处可微,则f(x)在点x0处可导
    • C、y=f(x)在点x0处连续,则f(x)在点x0处可微
    • D、y=f(x)在点x0处可导,则f(x)在点x0处连续

    正确答案:C

  • 第8题:

    单选题
    以下关于二元函数的连续性的说法正确是(  )。
    A

    若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续

    B

    若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续

    C

    若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续

    D

    以上说法都不对


    正确答案: C
    解析:
    根据二元函数f(x,y)在(x0,y0)出连续的定义可知B项正确。

  • 第9题:

    单选题
    对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?
    A

    必要条件而非充分条件

    B

    充分条件而非必要条件

    C

    充分必要条件

    D

    既非充分又非必要条件


    正确答案: B
    解析: 暂无解析

  • 第10题:

    判断题
    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.
    A

    B


    正确答案:
    解析: 暂无解析

  • 第11题:

    单选题
    如果函数f(x)在点x0的某个邻域内恒有|f(x)|≤M(M是正数),则函数f(x)在该邻域内(  )。
    A

    极限存在

    B

    连续

    C

    有界

    D

    不能确定


    正确答案: C
    解析:
    由函数有界的定义可知:设函数f(x)的定义域为D,数集X∈D。如果存在数K1使得f(x)≤K1对任意x∈X都成立则称函数f(x)在X上有上界。故选C项。

  • 第12题:

    判断题
    函数在一点处的左右极限都存在,则函数在这一点的极限存在。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第13题:

    函数y=f(x)在点x=x0处取得极小值,则必有:

    A.f′(x0)=0
    B.f′′(x0)>0
    C. f′(x0)=0 且 f(xo)>0
    D.f′(x0)=0 或导数不存在

    答案:D
    解析:
    已知y=f(x)在x=x0处取得极小值,但在题中f(x)是否具有一阶、二阶导数,均未说明,从而答案A、B、C就不一定成立。答案D包含了在x=x0可导或不可导两种情况,如 :y= x 在x=0处导数不存在,但函数y= x 在x=0取得极小值。

  • 第14题:

    函数y = f (x)在点x = x0,处取得极小值,则必有:


    答案:D
    解析:
    取得极值,有可能是导数不存在,如函数y = x 在x = 0时取得极小值,但在x = 0处导数不存在。

  • 第15题:

    函数y=f(x)在点xo处的左、右极限存在且相等是函数在该点极限存在的( ).《》( )

    A.必要条件
    B.充分条件
    C.充分必要条件
    D.既非充分条件,也非必要条件

    答案:C
    解析:

  • 第16题:

    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.


    正确答案:错误

  • 第17题:

    若x点是函数的可去间断点,则在x点处函数()。

    • A、左右极限都存在但不相等
    • B、左极限不存在
    • C、左右极限都存在且相等
    • D、右极限不存在

    正确答案:C

  • 第18题:

    函数在一点处的左右极限都存在,则函数在这一点的极限存在。


    正确答案:错误

  • 第19题:

    单选题
    若x点是函数的第二类间断点,则在x点处函数()。
    A

    极限值不等于这点的函数值

    B

    左右极限都存在

    C

    左右极限至少有一个不存在

    D

    没有定义


    正确答案: C
    解析: 暂无解析

  • 第20题:

    单选题
    若x点是函数的可去间断点,则在x点处函数()。
    A

    左右极限都存在但不相等

    B

    左极限不存在

    C

    左右极限都存在且相等

    D

    右极限不存在


    正确答案: A
    解析: 暂无解析

  • 第21题:

    单选题
    考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。
    A

    ②⇒③⇒①

    B

    ③⇒②⇒①

    C

    ③⇒④⇒①

    D

    ③⇒①⇒④


    正确答案: C
    解析:
    根据二元函数连续、可微及可导的关系可知②⇒③⇒①、②⇒③⇒④。

  • 第22题:

    单选题
    二元函数z=f(x,y)在点(x0,y0)处存在一阶连续偏导数是它在此点处可微的(  )。
    A

    充分条件

    B

    必要条件

    C

    充要条件

    D

    以上都不是


    正确答案: C
    解析:
    一阶偏导数在(x0,y0)点连续,则函数在(x0,y0)处可微;而函数在(x0,y0)处可微,其一阶偏导数不一定连续。

  • 第23题:

    单选题
    如果函数f(x)当x→x0时极限存在,则函数f(x)在点x0处(  )。
    A

    有定义

    B

    无定义

    C

    不一定有定义

    D

    连续


    正确答案: C
    解析:
    f(x)当x→x0时极限是否存在与函数在该点有无定义无关,所以A、B两项错误。又该点的极限存在,但不一定连续,且函数f(x)在x0点处连续要求在该点必须有定义,所以D项错误,C项正确。故选C项。