更多“求函数(x)=x3-3x+1的单调区间和极值.”相关问题
  • 第1题:

    已知函数f(x)=x3 +ax2+b,曲线y=f(x)在点(1,1)处的切线为y=x.

    (I)求a,b;

    (II)求f(x)的单调区间,并说明它在各区间的单调性.


    正确答案:

  • 第2题:

    设函数f(x,y)=X2+Y2+xy+3,求f(x,y)的极值点与极值.


    答案:
    解析:

  • 第3题:

    求函数z=x2+y2+2y的极值.


    答案:
    解析:

  • 第4题:

    求函数(x)=x3-3x-2的单调区间和极值.


    答案:
    解析:
    函数的定义域为(-∞,+∞).
    列表如下:

    函数(x)的单调增区间为(-∞,-1),(1,+∞);单调减区间为(-1,1).极大值为(-1)=0,极小值为(1)=-4.

  • 第5题:

    求函数(x,y)=4(x-y)-x2-y2的极值.


    答案:
    解析:

    所以(2,-2)=8为极大值.

  • 第6题:

    设z=z(x,y)是由 确定的函数,求 的极值点和极值


    答案:
    解析:

  • 第7题:

    下列命题中,正确的是( ).

    A.单调函数的导函数必定为单调函数
    B.设f´(x)为单调函数,则f(x)也为单调函数
    C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点
    D.设f(x)在(a,b)内可导且只有一个极值点xo,f´(xo)=0

    答案:D
    解析:
    可导函数的极值点必定是函数的驻点,故选D.

  • 第8题:

    设函数(x)=2x3+3mx2-36x+m,且′(-1)=-36.
    (Ⅰ)求m;
    (Ⅱ)求(x)的单调区间.


    答案:
    解析:

    当x>2时,′(x)>0.
    故(x)的单调递减区间为(-3,2),(x)的单调递增区间为(-∞,-3),(2,+∞).

  • 第9题:

    求函数f(x,y)=e2x(x+y2+2y)的极值.?


    答案:
    解析:

  • 第10题:

    求函数f(x)=x3-3x+1的单调区间和极值.


    答案:
    解析:
    函数的定义域为




    注意

    【评析】判定f(x)的极值,如果x0为f(x)的驻点或不可导的点,可以考虑利用极值的第一充分条件判定.但是当驻点处二阶导数易求时,可以考虑利用极值的第二充分条件判定.

  • 第11题:

    求函数的单调区间和极值.


    答案:
    解析:
    函数的定义域为

    函数f(x)的单调减区间为(-∞,0],函数f(x)的单调增区间为[0,+∞);f(0)=2为极小值.

  • 第12题:



    (1)求实数a的值;
    (2)求函数 (x)的单调区间。


    答案:
    解析:

  • 第13题:

    确定函数y=2x4-12x2的单调区间、极值及函数曲线的凸凹性区间和拐点.


    答案:
    解析:

  • 第14题:

    求y=f(x)=2x3-3x2-12x+14的极值点和极值,以及函数曲线的凸凹性区间和拐点.


    答案:
    解析:
    y'=6x2-6x-12,y''=12x-6,令y'=0得驻点x1=-1,x2=2,当x2=2时,y''=18>0.所以f(z)在x=2处取极小值-6.当x1=-1时,y''<0.所以f(x)在x=-1处取极大值21.

  • 第15题:

    求函数(x)=x3-3x2-9x+2的单调区间和极值.


    答案:
    解析:
    (x)的定义域为(-∞,+∞).
    列表如下:

    函数发(x)的单调增加区间为(-∞,-l),(3,+∞);单调减少区间为(-1,3).极大值发(-1)=7,极小值(3)=-25.

  • 第16题:

    已知函数(x)=x4-4x+1.
    (1)求(x)的单调区间和极值;
    (2)求曲线y=(x)的凹凸区间.


    答案:
    解析:

    列表如下,



    由表可知曲线(x)的单调递减区间为(-∞,1),单调递增区间为(1,+∞).由于"(x)=12x2≥0,所以为凹曲线,凹区间为(-∞,+∞),极小值为(1)=1-4+1=-2.

  • 第17题:

    已知函数f(x)=(1/2)e2x-ax,g(x)=6xlnx,,h(x)=2e2x-4/x,a>o,b≠0。
    (1)求函数f(x)的最小值;(3分)
    (2)求函数g(x)的单调区间;(3分)
    (3)证明:函数h(x)在[1/2,1]上有且仅有l个零点。(4分)


    答案:
    解析:

  • 第18题:

    求函数的单调区间与极值.


    答案:
    解析:
    函数f(x)的定义域为(-∞,+∞),且

    令f'(x)=0,得x=0,x=±1,列表如下:

    由以上表格可知,f(x)单调增加区间为(-1,0)和(0,+∞);f(x)单调减少的区间为(-∞,-1)和(0,1).f(x)的极小值为

    【评注】本题主要考查变上限积分求导和定积分计算,以及求函数单调在区间与极值的方法.考的是基本内容和常见问题,但该题的得分率并不高,考生的主要问题是
    1)不能正确求出是最普通的错误;
    2)部分考生由于粗心只求出一个驻点x=0,漏掉了驻点x=±1;
    3)部分考生不能正确表示单调区间,将单调增加区间写成了(-1,0)∪(1,+∞),单调减少区间写成了(-∞,-1)∪(0,1).

  • 第19题:

    设函数
    (I)求f(χ)的单调区间;
    (Ⅱ)求f(χ)的极值.


    答案:
    解析:

  • 第20题:

    (本小题13分)已知函数f(x)=2x3-3x2,求
    (1)函数的单调区间;
    (2)函数f(x)在区间[-3,2]的最大值与最小值。


    答案:
    解析:

  • 第21题:

    求函数一的单调区间、极值及其曲线的凹凸区间和拐点.


    答案:
    解析:


    列表:


    说明


    【评析】拐点(x0fx0))的坐标如果写成单一值x0或写为单一值fx0)都是错误的.

  • 第22题:

    求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.


    答案:
    解析:


    【评析】求函数f(x)的单调区间,应先判定函数的定义域.求出函数的驻点,即y′=0的点;求出y的不可导的点,再找出y′>0时x的取值范围,这个范围可能是一个区间,也可能为几个区间.

  • 第23题:

    已知函数



    (1)求f(x)单调区间与值域;
    (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。



    答案:
    解析: