参考答案和解析
答案:
解析:


更多“已知数列{an}的前n项和是Sn,且2Sn+an=1(n∈N*)。 ”相关问题
  • 第1题:

    已知数列{an}的通项公式为an =(4 9) n-1 - (2 3) n-1 (n ∈ N∗ ),则数列{an}( ).

    (A)有最大项,没有最小项.

    (B)有最小项,没有最大项.

    (C)既有最大项又有最小项.

    (D)既没有最大项也没有最小项.


    参考答案C

  • 第2题:

    设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9= 。


    正确答案:
    15

  • 第3题:

    在等差数列{an}中,已知a1=2,且a2+a4=20,若an=18,则n=5。()


    答案:对
    解析:

  • 第4题:

    —个公比为2的等比数列,第n项与前n-1项和的差等于5,则此数列前4项之和为:

    A.70
    B.85
    C.80
    D.75

    答案:D
    解析:

  • 第5题:

    在等比数列中,a1=3,an=96,Sn=189,则公比q=,项数n=。


    答案:
    解析:
    q=2,n=6

  • 第6题:

    设数列an的前n项和为Sn,则数列an是等差数列。(1)Sn=n2+2n,n=1,2,3……(2)Sn=n2+2n+1,n=1,2,3……

    A.条件(1)充分,但条件(2)不充分
    B.条件(2)充分,但条件(1)不充分
    C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分
    D.条件(1)充分,条件(2)充分
    E.条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

    答案:A
    解析:
    等差数列前n项和Sn的表达式是关于n的二次函数(公差不为0),且无常数项,所以条件(1)充分。

  • 第7题:

    已知数列{an}的通项公式为an=2n,数列{bn}的通项公式为bn=3n+2.若数列{an}和{bn}的公共项顺序组成数列{cn},则数列{cn}的前3项之和为( )

    A.248
    B.168
    C.128
    D.19
    E.以上选项均不正确

    答案:B
    解析:

  • 第8题:

    已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为A。第项之后各
    (1)若是一个周期为4的数列(即对任意写出dl,dz,d3,d0的值;
    (2)设d为非负整数,证明:do=一d(n=1,2,3…)的充分必要条件为{an}为公差为d的等差数列:
    (3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为l。


    答案:
    解析:

  • 第9题:

    (10分)已知数列{an}满足a1=3,an+1= an +2n,
    (1)求{ an }的通项公式an;
    (2)若bn=n an,求数列{bn}的前n项和sn。


    答案:
    解析:

  • 第10题:

    (10分)已知数列{an}的前n项和Sn=2n+1-k(其中k为常数):
    (1)求数列{ an }的通项公式;(4分)
    (2)若a1=2,求数列{n an }的前n项和Tn。(6分)


    答案:
    解析:

  • 第11题:

    在移动平均中,设移动n年则()。

    • A、当n为偶数时,移动后所得新数列较原数列首尾各缺n∕2项
    • B、当n为奇数时,移动后所得新数列较原数列首尾缺(N-1)∕2项
    • C、当n为偶数时,移动后所得新数列较原数列首尾缺n项
    • D、当n为奇数时,移动后所得新数列较原数列首尾缺n项

    正确答案:A,B

  • 第12题:

    单选题
    已知数列{an}是公差为d的等差数列,Sn是其前n项和,且有S9<S8=S7,则下列说法中不正确的是(  )。
    A

    S9<S10

    B

    d<0

    C

    S7与S8均为Sn的最大值

    D

    a8=0


    正确答案: B
    解析:
    由S9<S8,可知a9<0,由S8=S7,可知a8=0,所以d<0,所以B、D两项正确;由d<0可知S9以后所有和都小于S8=S7,所以C项正确,A项错误。

  • 第13题:

    已知数列{an}中,a1=2,an+1=(1+an)/(1-an).记数列{an}的前n项的乘积为∏n,则∏2012=____.


    参考答案1

  • 第14题:

    已知等差数列{an}中,a1=21,Sn是它的前n项之和,S7=S15。
    (1)求Sn;
    (2)这个数列的前多少项之和最大 求出最大值。


    答案:
    解析:
    (1)设等差数列的公差为d,由题意可得:



    (2)Sn=22n-n2=-(n-11)2+121,当n=11时,数列之和最大,最大值为121。

  • 第15题:

    一个公比为2的等比数列,第n项与前n-1项和的差等于3,则此数列的前4项之和为:



    A.54
    B.45
    C.42
    D.36

    答案:B
    解析:
    设首项为a1,则第n项为a1×2 n-1,前n-1项和为两式相减得到a1 =3,因此数列前四项之和为3×(24-1)=45.

  • 第16题:

    已知等差数列前n项和
    (Ⅰ)求这个数列的逋项公式;
    (II)求数列第六项到第十项的和.


    答案:
    解析:

  • 第17题:

    已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1.
    (Ⅰ)设bn=an+1-2an,求证:数列{bn)是等比数列;
    (Ⅱ)设求证:数列{cn}是等差数列;
    (Ⅲ)求数列{an}的通项公式及前n项和.


    答案:
    解析:



  • 第18题:

    已知{an)是公差大于零的等差数列,Sn是{an)的前n项和.则Sn≥S10,n=1,2,….(1)a10=0;(2)a11a10小于0

    A.条件(1)充分,但条件(2)不充分;
    B.条件(2)充分,但条件(1)不充分;
    C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分;
    D.条件(1)充分,条件(2)也充分;
    E.条件(1)和条件(2)单独都不充分,条件(1)和条件(7)联合起来也不充分.

    答案:D
    解析:
    设a2+a3+…+an-1=X,则M-N=(a1+X)(X+an)-(a1+X+an)X=a1an,故条件二单独充分.

  • 第19题:

    高中数学《等比数列前n项和》
    一、考题回顾
    题目来源:5月19日 上午 重庆市 面试考题
    试讲题目
    1.题目:等比数列前n项和
    2.内容:



    3.基本要求:
    (1)引导学生应用等比数列前n项和;
    (2)试讲10分钟;
    (3)合理设计板书;
    (4)要有适当的提问互动环节。
    答辩题目
    1.等差数列的前n项和公式是什么?
    2.怎样才能设计好授课板书呢?你能给出几点建议吗?


    答案:
    解析:
    二、考题解析
    【教学过程】
    (一)引入新课
    复习等差数列前n项和公式。提问:等比数列前n项和怎么求呢?有没有相应的公式呢?
    引出课题。
    (二)探索新知


  • 第20题:

    已知数列{%}的前n项和是
    (1)求证:数列{an}是等比数列:
    (2)记的前n项和Tn的最大值及相应的n值。


    答案:
    解析:

  • 第21题:

    已知数列{an}满足a1=2,an+1=3an+2(n∈N*),
    (1)求数列{an}的通项公式;



    答案:
    解析:

  • 第22题:

    数列{an}的前n项和为Sn,若an=1/n(n+1),则S5等于()。

    • A、1
    • B、5/6
    • C、1/6
    • D、1/30

    正确答案:B

  • 第23题:

    单选题
    已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于(  ).
    A

    2n-1

    B

    2n+1

    C

    2n-2

    D

    2n+2


    正确答案: D
    解析:
    由an+1=an+2可得an+1-an=2,知数列{an}为等差数列,且公差d=2,故通项公式为:an=1+(n-1)×2=2n-1.