参考答案和解析
A
更多“设 A 为方阵, f(x), g(x)为多项式, B = f(A), C = g(A), 则BC = CB.”相关问题
  • 第1题:

    设函数f(x)为奇函数,g(x)为偶函数,则复合函数()是奇函数。

    A.f(f(x))

    B.g(f(x))

    C.f(g(x))

    D.g(g(x))


    正确答案:A

  • 第2题:

    设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是(  )。

    A. f[g(x)]
    B. f[f(x)]
    C. g[f(x)]
    D. g[g(x)]

    答案:D
    解析:
    D项,令T(x)=g[g(x)]。因为T(-x)=g[g(-x)]=g[-g(x)]=-g[g(x)],所以T(-x)=-T(x),所以g[g(x)]为奇函数。

  • 第3题:

    设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )

    A.f(x)g(b)>f(b)g(x)
    B.f(x)g(a)>f(a)g(x)
    C.f(x)g(x)>f(b)g(b)
    D.f(x)g(x)>f(a)g(a)

    答案:A
    解析:

  • 第4题:

    对于任意f(x)∈F[x],f(x)都可以整除哪个多项式?()

    • A、f(x+c)c为任意常数
    • B、0.0
    • C、任意g(x)∈F{x]
    • D、不存在这个多项式

    正确答案:B

  • 第5题:

    若f(x)与g(x)互素,则f(x)与g(x)的公因式都是零多项式。


    正确答案:错误

  • 第6题:

    设单调可微函数f(x)的反函数为g(x),f(1)=3,f′(1)=2,f″(3)=6则g′(3)=()


    正确答案:1/2

  • 第7题:

    设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()

    • A、f(x)=g(f(x))
    • B、g(x)=f(f(x))
    • C、f(x)=g(x)
    • D、g(x)=f(g(x))

    正确答案:C

  • 第8题:

    单选题
    设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是()。
    A

    f[g(x)]

    B

    f[f(x)]

    C

    g[f(x)]

    D

    g[g(x)]


    正确答案: D
    解析:

  • 第9题:

    填空题
    设单调可微函数f(x)的反函数为g(x),f(1)=3,f′(1)=2,f″(3)=6则g′(3)=()

    正确答案: 1/2
    解析: 暂无解析

  • 第10题:

    单选题
    设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()
    A

    f(x)=g(f(x))

    B

    g(x)=f(f(x))

    C

    f(x)=g(x)

    D

    g(x)=f(g(x))


    正确答案: C
    解析: 暂无解析

  • 第11题:

    判断题
    在数域K中多项式f(x)与g(x)若有f=g,则f(x)=g(x)。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第12题:

    单选题
    对于任意f(x)∈F[x],f(x)都可以整除哪个多项式?()
    A

    f(x+c)c为任意常数

    B

    0.0

    C

    任意g(x)∈F{x]

    D

    不存在这个多项式


    正确答案: A
    解析: 暂无解析

  • 第13题:

    设f(x),g(x)ϵP[x J. 若f(x)lg(x),g(x)lf(x),则 f(x)与g(x)的关系是( ).


    参考答案:A

  • 第14题:

    设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。

    A. [f(x)/g(x)]>[f(a)/g(b)]
    B. [f(x)/g(x)]>[f(b)/g(b)]
    C. f(x)g(x)>f(a)g(a)
    D. f(x)g(x)>f(b)g(b)

    答案:C
    解析:
    因为[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)>0,所以函数f(x)g(x)在[a,b]上单调递增。所以,当x∈(a,b)时,f(a)g(a)<f(x)g(x)<f(b)g(b)。

  • 第15题:

    在F(x)中,f(x),g(x)是次数≤n的多项式,若在F中有n+1个不同的元素,c1,c2…使得f(ci)=g(ci),则f(x)=g(x)。


    正确答案:正确

  • 第16题:

    互素多项式的性质,若f(x)|g(x)h(x),且(f(x),g(x))=1,那么可以推出什么?()

    • A、g(x)
    • B、h(x)
    • C、f(x)g(x)
    • D、f(x)

    正确答案:D

  • 第17题:

    若f′(x)=g′(x),则下列哪个式子成立()?

    • A、f(x)=g(x)
    • B、f(x)>g(x)
    • C、f(x)
    • D、f(x)=g(x)+cc为任意常数

    正确答案:D

  • 第18题:

    设F(x),G(x)是f(x)的两个原函数,则下面的结论不正确的是()。

    • A、F(x)+C也是f(x)的原函数,C为任意常数
    • B、F(x)=G(x)+C,C为任意常数
    • C、F(x)=G(x)+C,C为某个常数
    • D、F’(x)=G’(x)

    正确答案:B

  • 第19题:

    在数域K中多项式f(x)与g(x)若有f=g,则f(x)=g(x)。


    正确答案:正确

  • 第20题:

    判断题
    若f(x)与g(x)互素,则f(x)与g(x)的公因式都是零多项式。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第21题:

    判断题
    在F(x)中,f(x),g(x)是次数≢n的多项式,若在F中有n+1个不同的元素,c1,c2…使得f(ci)=g(ci),则f(x)=g(x)。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第22题:

    问答题
    设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。

    正确答案:
    f(x)g(x)=1,则f′(x)g(x)+f(x)g′(x)=0①
    即f′(x)/f(x)=-g′(x)/g(x)②
    对①两边求导得f″(x)g(x)+2f′(x)g′(x)+f(x)g″(x)=0,即f″(x)+2f′(x)g′(x)/g(x)+f(x)g″(x)/g(x)=0,即f″(x)/f′(x)+2f′(x)g′(x)/f′(x)g(x)+f(x)g″(x)/f′(x)g(x)=0。
    由①得f″(x)/f′(x)+2g′(x)/g(x)-f(x)g″(x)/f(x)g′(x)=0,则f″(x)/f′(x)+2g′(x)/g(x)=g″(x)/g′(x)。
    又由②得f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
    解析: 暂无解析

  • 第23题:

    单选题
    设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是(  )。[2018年真题]
    A

    f[g(x)]

    B

    f[f(x)]

    C

    g[f(x)]

    D

    g[g(x)]


    正确答案: C
    解析:
    D项,令T(x)=g[g(x)]。因为T(-x)=g[g(-x)]=g[-g(x)]=-g[g(x)],所以T(-x)=-T(x),所以g[g(x)]为奇函数。

  • 第24题:

    单选题
    设F(x),G(x)是f(x)的两个原函数,则下面的结论不正确的是()。
    A

    F(x)+C也是f(x)的原函数,C为任意常数

    B

    F(x)=G(x)+C,C为任意常数

    C

    F(x)=G(x)+C,C为某个常数

    D

    F’(x)=G’(x)


    正确答案: D
    解析: 由原函数的定义有F’(x)=f(x),G’(x)=f(x),因此(D)正确,而(F(x)+C)’=f(x),因此(A)正确,F(x)=G(x)+C,C应为某个常数,因此(C)正确而(B)不正确。