一个矩阵转置的转置是它本身.
第1题:
A、先将两个矩阵读入cache再进行乘法
B、先转置第一个矩阵再进行乘法
C、先转置第二个矩阵再进行乘法
D、以上皆错
第2题:
此题为判断题(对,错)。
第3题:
阅读以下说明和C函数,将应填入(n)处的字句写在对应栏内。
[说明]
若一个矩阵中的非零元素数目很少且分布没有规律,则称之为稀疏矩阵。对m行n列的稀疏矩阵M,进行转置运算后得到n行m列的矩阵MT,如图3-1所示
为了压缩稀疏矩阵的存储空间,用三元组(即元素所在的行号、列号和元素值、表示稀疏矩阵中的一个非零元素,再用一维数组逐行存储稀疏矩阵中的所有非零元素也称为三元组顺序表)。例如,图3-1所示的矩阵M相应的三元组顺序表如表3-1所示。其转置矩阵MT的三元组顺序表如表3-2所示。
函数TransposeMatrix(Matrix M)的功能是对用三元组顺序表表示的稀疏矩阵M进行转置运算。
对M实施转置运算时,为了将M中的每个非零元素直接存入其转置矩阵MT三元组顺序表的相应位置,需先计算M中每一列非零元素的数目(即MT中每一行非零元素的数目),并记录在向量num中;然后根据以下关系,计算出矩阵M中每列的第一个非零元素在转置矩阵MT三元组顺序表中的位置:
cpot[0]=0
cpot[j]=cpot[j-1]+num[j-1]) /*j为列号*/
类型ElemType,Triple和Matrix定义如下:
typedef int ElemType;
typedef struct{ /*三元组类型*/
int r,c; /*矩阵元素的行号、列号*/
ElemType e; /*矩阵元素的值*/
}Triple;
typedef struct{ /*矩阵的元组三元组顺序表存储结构*/
int rows,cols,elements; /*矩阵的行数、列数和非零元素数目*/
Triple data[MAXSIZE];
}Matrix;
[C语言函数]
int TransposeMatrix(Matrix M)
{
int j,q,t;
int *num, *cpot;
Matrix MT; /*MT是M的转置矩阵*/
num=(int*)malloc(M.cols*sizeof(int));
cpot=(int*)malloc(M.cols*sizeof(int));
if(!num ||cpot)
return ERROR;
MT.rows=(1); /*设置转置矩阵MT行数、列数和非零元素数目*/
MT.cols=(2);
MT.elements=M.elements;
if(M.elements>0){
for (q=0 ; q<M. cols ; q++)
num[q]=0;
for (t=0; t<M.elements;++t) /*计算矩阵M中每一列非零元素数目*/
num [M.data[t].c]++;
/*计算矩阵M中每列第一个非零元素在其转置矩阵三元组顺序表中的位置*/
(3);
for(j=1;j<M.cols;j++)
cpot[j]=(4);
/*以下代码完成转置矩阵MT三元组顺序表元素的设置*/
for(t=0;t<M.elements;t++){
j=(5); /*取矩阵M的一个非零元素的列号存入j*/
/*q为该非零元素在转置矩阵MT三元组顺序表中的位置(下标)*/
q=cpot[j];
MT.data[q].r=M.data[t].c;
MT.data[q].c=M.data[t].r;
MT.data[q].e=M.data[t].e;
++cpot[j]; /*计算M中第j列的下一个非零元素的目的位置*/
}/*for*/
} /*if*/
free(num); free(cpot);
/*此处输出矩阵元素,代码省略*/
return OK;
}/*TransposeMatrix*/
第4题:
请编写程序fun,函数的功能是:实现B=A+Aˊ,即把矩阵A加上A的转置,存放在矩阵B中。计算结果在main函数中输出。
例如,输入下面的矩阵: 其转置矩阵为:
1 2 3 1 4 7
4 5 6 2 5 8
7 8 9 3 6 9
程序输出:
2 6 10
6 10 14
10 14 18
注意:部分源程序在文件PROGl.C中。
请勿改动主函数main和其他函数中的任何内容,仅在函数fun的花括号中填入你编写的若干语句。
第5题:
第6题:
第7题:
第8题:
如何在Excel中将行列转置?
第9题:
当14ZK因故不能闭合,转空气位操纵时,将()
第10题:
对
错
第11题:
transpose(S)
determ(S)
colspace(S)
factor(S)
第12题:
转置
初等变换
乘以奇异矩阵
乘以非奇异矩阵
第13题:
A、初始化
B、第二个矩阵转置循环
C、矩阵元素乘—加计算的循环
D、结果输出
第14题:
A.不变
B.变大
C.变小
D.无法确定
答案:A
解析:以线性变换的角度理解矩阵,那么行列式代表“体积”的变化,秩代表像空间的维度。矩阵转置后行列式和秩不变;行和列是等价的,转置只是改变了行列的属性,而这两个属性没有什么意义,因此不会造成影响。
第15题:
1 写一个函数,将一个 3*3 矩阵转置。
第16题:
试题三(共15分)
阅读以下说明和C 函数,将应填入(n) 处的字句写在答题纸的对应栏内。
[说明]
若一个矩阵中的非零元素数目很少且分布没有规律,则称之为稀疏矩阵。对于m行n 列的稀疏矩阵M,进行转置运算后得到n 行m列的矩阵MT,如图3-1 所示。
函数TransposeMatrix(Matrix M)的功能是对用三元组顺序表表示的稀疏矩阵M 进行转置运算。
对 M 实施转置运算时,为了将M 中的每个非零元素直接存入其转置矩阵MT 三元组顺序表的相应位置,需先计算M 中每一列非零元素的数目(即MT 中每一行非零元素的数目),并记录在向量num 中;然后根据以下关系,计算出矩阵M 中每列的第一个非零元素在转置矩阵MT 三元组顺序表中的位置:
cpot[0] = 0
cpot[j] = cpot[j-1] + num[j-1] /* j 为列号 */
类型ElemType、Triple 和Matrix 定义如下:
typedef int ElemType;
typedef struct { /* 三元组类型 */
int r,c; /* 矩阵元素的行号、列号*/
ElemType e; /* 矩阵元素的值*/
}Triple;
typedef struct { /* 矩阵的三元组顺序表存储结构 */
int rows,cols,elements; /* 矩阵的行数、列数和非零元素数目 */
Triple data[MAXSIZE];
}Matrix;
[C函数]
int TransposeMatrix(Matrix M)
{
int j,q,t;
int *num, *cpot;
Matrix MT; /* MT 是M的转置矩阵 */
num = (int *)malloc(M.cols*sizeof(int));
cpot = (int *)malloc(M.cols*sizeof(int));
if (!num || !cpot)
return ERROR;
MT.rows = (1) ; /* 设置转置矩阵MT行数、列数和非零元数目*/
MT.cols = (2) ;
MT.elements = M.elements;
if (M.elements > 0) {
for(q = 0; q < M.cols; q++)
num[q] = 0;
for(t = 0; t < M.elements; ++t) /* 计算矩阵M 中每一列非零元素数目*/
num[M.data[t].c]++;
/* 计算矩阵M中每列第一个非零元素在其转置矩阵三元组顺序表中的位置*/
(3) ;
for(j = 1;j < M.cols; j++)
cpot[j] = (4) ;
/* 以下代码完成转置矩阵MT三元组顺序表元素的设置 */
for(t = 0; t < M.elements;t++){
j = (5) ; /* 取矩阵M 的一个非零元素的列号存入j */
/* q 为该非零元素在转置矩阵MT 三元组顺序表中的位置(下标)*/
q = cpot[j];
MT.data[q].r = M.data[t].c;
MT.data[q].c = M.data[t].r;
MT.data[q].e = M.data[t].e;
++cpot[j]; /* 计算M 中第j列的下一个非零元素的目的位置 */
}/* for */
}/* if */
free(num); free(cpot);
/*此处输出矩阵元素,代码省略*/
return OK;
}/* TransposeMatrix */
第17题:
第18题:
第19题:
第20题:
若采用三元组压缩技术存储稀疏矩阵,只要把每个元素的行下标和列下标互换,就完成了对该矩阵的转置运算。
第21题:
转斗换向阀是()
第22题:
第23题:
153转换阀置空气位
电空制动控制器须置运转位
关157塞门
154转换阀置空气位
第24题: