若线性方程组AX=B的导出组AX=0只有零解,则AX=B()A.可能无解B.有唯一解C.有无穷多解D.也只有零解

题目

若线性方程组AX=B的导出组AX=0只有零解,则AX=B()

A.可能无解

B.有唯一解

C.有无穷多解

D.也只有零解


相似考题
更多“若线性方程组AX=B的导出组AX=0只有零解,则AX=B()”相关问题
  • 第1题:

    对方程组Ax=b与其导出组Ax=o,下列命题正确的是()。

    A、Ax=o有解时,Ax=b必有解.

    B、Ax=o有无穷多解时,Ax=b有无穷多解.

    C、Ax=b无解时,Ax=o也无解.

    D、Ax=b有惟一解时,Ax=o只有零解.


    参考答案:D

  • 第2题:

    设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是()

    A、Ax=0只有零解

    B、Ax=0的基础解系含r(A)个解向量

    C、Ax=0的基础解系含n-r(A)个解向量

    D、Ax=0没有解


    参考答案:C

  • 第3题:

    若非齐次线性方程组AX=b中,方程的个数少于未知量的个数,则下列结论中正确的是:

    A.AX=0仅有零解
    B.AX=0必有非零解
    C.AX=0—定无解
    D.AX=b必有无穷多解

    答案:B
    解析:
    提示:Ax=0必有非零解。
    ∵在解方程Ax=0时,对系数进行的初等变换,必有一非零的r阶子式,而未知数的个数 n,n>r, 基础解系的向量个数为n-r, ∴必有非零解。

  • 第4题:

    设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为 矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A) 秩(B); ② 若秩(A) 秩(B),则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A)=秩(B); ④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解


    A.① ②
    B.① ③
    C.② ④
    D.③ ④


    答案:B
    解析:

  • 第5题:

    设A是m×n阶矩阵,下列命题正确的是().

    A.若方程组AX=0只有零解,则方程组AX=b有唯一解
    B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解
    C.若方程组AX=b无解,则方程组AX=0一定有非零解
    D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解

    答案:D
    解析:

  • 第6题:

    设β1,β2是线性方程组Ax=b的两个不同的解,a1,a2是导出组Ax=0的基础解系,k1、k2是任意常数,则Ax=b的通解是:


    答案:C
    解析:


    k1a1+k2(a1-a2)=k1a1+k2a1-k2a2=(k1+k2)a1-k2a2
    设任意常数k1+k2=c,-k2=c2,则:
    k1a1+k2(a1-a2)=c1a1+c2a2
    从而选项C满足线性方程Ax=b的条件。

  • 第7题:

    若非齐次线性方程组中,方程的个数少于未知量的个数,则下列结论中正确的是:

    A.AX=0仅有零解
    B.AX=0必有非零解
    C.AX=0 —定无解
    D.AX=b必有无穷多解

    答案:B
    解析:
    提示Ax=0必有非零解。
    解方程Ax=0时,对系数矩阵进行行的初等变换,必有一非零的r阶子式,而未知数的个数n,n>r,基础解系的向量个数为n-r,所以必有非零解。

  • 第8题:

    设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。

    • A、①②
    • B、①③
    • C、②④
    • D、③④

    正确答案:B

  • 第9题:

    设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。

    • A、无解
    • B、只有零解
    • C、有非零解
    • D、不一定

    正确答案:C

  • 第10题:

    问答题
    设AX=0与BX=0均为n元齐次线性方程组,秩r(A)=r(B),且方程组AX=0的解均为方程组BX=0的解,证明方程组AX=0与BX=0同解.

    正确答案:
    设r(A)=r(B)=r,方程组AX=0的基础解系为①:ζ12,…,ζn-r,方程组BX=0的基础解系为②:η12,…,ηn-r.
    构造向量组③:ζ12,…,ζn-r12,…,ηn-r.
    由向量组①可由②线性表示,则向量组②和③等价,从而r(③)=n-r,所以ζ12,…,ζn-r是向量组③的极大线性无关组,有η12,…,ηn-r可由ζ12,…,ζn-r线性表示,即BX=0的任一解都可由ζ12,…,ζn-r线性表示,故BX=0的解都是AX=0的解,所以方程组AX=0与BX=0同解.
    解析: 暂无解析

  • 第11题:

    单选题
    n元线性方程组AX(→)=b(→)有唯一解的充要条件为(  )。
    A

    A为方阵且|A|≠0

    B

    导出组AX()0()仅有零解

    C

    秩(A)=n

    D

    系数矩阵A的列向量组线性无关,且常数向量b()与A的列向量组线性相关


    正确答案: C
    解析:
    A项,系数矩阵A不一定是方阵;B项,导出组只有零解,方程组AX()b()不一定有解;C项,当r(A)=n时,不一定有r(A)=r(A(_))=n;D项,b()可由A的列向量组线性表示,则方程组AX()b()有唯一解。

  • 第12题:

    设A为m*n矩阵,则有()。

    A、若mn,则有ax=b无穷多解

    B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;

    C、若A有n阶子式不为零,则Ax=b有唯一解;

    D、若A有n阶子式不为零,则Ax=0仅有零解。


    参考答案:D

  • 第13题:

    若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解


    答案:对
    解析:

  • 第14题:

    设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题:① 若Ax=0的解均是Bx=0的解,则秩(A)秩(B);② 若秩(A)秩(B),则Ax=0的解均是Bx=0的解;③ 若Ax=0与Bx=0同解,则秩(A)=秩(B);④ 若秩(A)=秩(B), 则Ax=0与Bx=0同解,以上命题中正确的是

    A.① ②
    B.① ③
    C.② ④
    D.③ ④

    答案:B
    解析:

  • 第15题:

    设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。

    A.若Ax=0仅有零解,则Ax=b有惟一解
    B.若Ax=0有非零解,则Ax=b有无穷多个解
    C.若Ax=b有无穷多个解,则Ax=0仅有零解
    D.若Ax=b有无穷多个解,则Ax=0有非零解

    答案:D
    解析:

  • 第16题:

    设β1,β2是线性方程组Ax=b的两个不同的解,α1、α2是导出组Ax=0的基础解系,k1,k2是任意常数,则Ax=b的通解是:


    答案:C
    解析:

  • 第17题:

    都是线性方程组Ax=0的解,则矩阵A为:


    答案:D
    解析:
    提示:a1,a2是方程组Ax=0的两个线性无关的解,方程组含有3个未知量,故矩阵A的秩R(A)=3-2=1,而选项A、B、C的秩分别为3、2、2均不符合要求。将选项D代入方程组_

  • 第18题:

    若非齐次线性方程组Ax=b中方程个数少于未知量个数,那么( )。
    A. Ax = b必有无穷多解 B.Ax=0必有非零解C.Ax=0仅有零解 D. Ax= 0一定无解


    答案:B
    解析:
    提示:A的秩小于未知量个数。

  • 第19题:

    若非齐次线性方程组Ax=b中方程个数少于未知量个数,则下列结论中正确的是()。

    • A、Ax=0仅有零解
    • B、Ax=0必有非零解
    • C、Ax=0一定无解
    • D、Ax=b必有无穷多解

    正确答案:B

  • 第20题:

    单选题
    设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。
    A

    无解

    B

    只有零解

    C

    有非零解

    D

    不一定


    正确答案: A
    解析: AX=0有非零解的充要条件是R(A)<6,而4×6矩阵的秩R(A)≤4,故AX=0有非零解,故选(C)。

  • 第21题:

    单选题
    设A是m×n矩阵,AX(→)=0(→)是AX(→)=b(→)的导出组,则下列结论正确的是(  )。
    A

    若AX()0()仅有零解,则AX()b()有唯一解

    B

    若AX()0()有非零解,则AX()b()有无穷多解

    C

    若AX()b()有无穷多解,则AX()0()仅有零解

    D

    若AX()b()有无穷多解,则AX()0()有非零解


    正确答案: A
    解析:
    由方程组AX()0()有解,不能判定AX()b()是否有解;由AX()b()有唯一解,知AX()0()只有零解;由AX()b()由无穷多解,知AX()0()有非零解。

  • 第22题:

    单选题
    设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。
    A

    ①②

    B

    ①③

    C

    ②④

    D

    ③④


    正确答案: B
    解析: 因为①中条件保证了n-r(A)≤n-r(B),所以r(A)≥r(B),而进一步易知③正确,而②、④均不能成立。