更多“函数在x点的导数是: ”相关问题
  • 第1题:

    设有三元方程 ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程

    A.只能确定一个具有连续偏导数的隐函数z=z(x,y)
    B.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)
    C.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)
    D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

    答案:D
    解析:

  • 第2题:

    函数z=f(x,y)在点(x,y)处的偏导数存在是函数在该点可微的()

    A.必要条件
    B.充分条件
    C.既非必要又非充分条件
    D.充要条件

    答案:A
    解析:
    因为对于二元函数而言,在某点的偏导数存在,未必推出在该点可微,但是二元函数在某点可微,则在该点的偏导数一定存在,故应选A答案.

  • 第3题:

    下列命题正确的是()

    A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
    B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
    C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
    D.若函数f(x)在点x0处连续,则f'(x0)一定存在

    答案:C
    解析:
    根据函数在点x0处取极值的必要条件的定理,可知选项C是正确的.

  • 第4题:

    函数y=(x+1)2(x-1)在x=1处的导数等于________ 。


    答案:
    解析:
    函数y=(x+1)2(x-1)的导函数为y'=3x2+2x-1,在x=1处的导数等于3+2-1=4。

  • 第5题:

    设函数f(x)具有2阶连续导数,若曲线y=f(x)过点(0,0)且与曲线y=^x在点(1,2)处相切,则=________.


    答案:1、2(ln2-1)
    解析:

  • 第6题:

    多元函数在某点处的偏导数刻划了函数在这点的变化率。


    正确答案:错误

  • 第7题:

    若某点是二元函数的驻点,则函数在这点处的()。

    • A、各个偏导数大于0
    • B、各个偏导数小于0
    • C、各个偏导数等于0
    • D、各二阶偏导数等于0

    正确答案:C

  • 第8题:

    下列结论正确的是().

    • A、x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件
    • B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件
    • C、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件
    • D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

    正确答案:D

  • 第9题:

    若z=xy+sinxy则函数z(x,y)在(0,1)点关于x的偏导数的值是()。

    • A、0
    • B、2
    • C、1
    • D、-1/2

    正确答案:B

  • 第10题:

    单选题
    考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。
    A

    ②⇒③⇒①

    B

    ③⇒②⇒①

    C

    ③⇒④⇒①

    D

    ③⇒①⇒④


    正确答案: C
    解析:
    根据二元函数连续、可微及可导的关系可知②⇒③⇒①、②⇒③⇒④。

  • 第11题:

    单选题
    设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(  )。
    A

    只能确定一个具有连续偏导数的隐函数z=z(x,y)

    B

    可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)

    C

    可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)

    D

    可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)


    正确答案: C
    解析:
    构造函数F(x,y,z)=xy-zlny+exz-1,则Fx′=y+zexz,Fy′=x-(z/y),Fz′=-lny+xexz。Fx′(0,1,1)=2≠0,Fy′(0,1,1)=-1≠0,Fz′(0,1,1)=0。
    故根据隐函数的存在定理可知,方程xy-zlny+exz=1能确定x是y、z的具有连续偏导数的函数x=x(y,z);y是x、z的具有连续偏导数的函数y=y(x,z)。因为Fz′(0,1,1)=0不能满足定理成立的条件,故不能确定z是x、y的具有连续偏导数的隐函数z=z(x,y)。

  • 第12题:

    单选题
    若z=xy+sinxy则函数z(x,y)在(0,1)点关于x的偏导数的值是()。
    A

    0

    B

    2

    C

    1

    D

    -1/2


    正确答案: B
    解析: 暂无解析

  • 第13题:

    函数在x处的导数是


    答案:A
    解析:
    解:选A。

  • 第14题:

    函数y=(x)在点x=0处的二阶导数存在,且'(0)=0,"(0)>0,则下列结论正确的是().

    A.x=0不是函数(x)的驻点
    B.x=0不是函数(x)的极值点
    C.x=0是函数(x)的极小值点
    D.x=0是函数(x)的极大值点

    答案:C
    解析:
    根据极值的第二充分条件,可知C正确.

  • 第15题:

    函数y=ex+lnx在x=1处的导数是______。


    答案:
    解析:

  • 第16题:

    函数f(x)在区间[a,b]上连续,且x∈[a,b],则下列导数为零的是(  ).



    答案:B
    解析:

  • 第17题:

    在点x=0处的导数等于零的函数是(  )

    A.y=sinx
    B.y=x-1
    C.y=ex-x
    D.y=x2-x

    答案:C
    解析:

  • 第18题:

    函数在某一点处的导数的几何意义是:函数曲线在这点处的切线。


    正确答案:错误

  • 第19题:

    函数在一点处的导数就是这点处的微分。


    正确答案:错误

  • 第20题:

    下列结论正确的是().

    • A、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件
    • B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件
    • C、z=(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件
    • D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

    正确答案:D

  • 第21题:

    单选题
    若某点是二元函数的驻点,则函数在这点处的()。
    A

    各个偏导数大于0

    B

    各个偏导数小于0

    C

    各个偏导数等于0

    D

    各二阶偏导数等于0


    正确答案: D
    解析: 暂无解析

  • 第22题:

    单选题
    设偶函数f(x)具有二阶连续导数,且f″(0)≠0,则x=0(  )。
    A

    一定不是函数的驻点

    B

    一定是函数的极值点

    C

    一定不是函数的极值点

    D

    不能确定是否为函数的极值点


    正确答案: D
    解析:
    由偶函数f(x)在x=0处可导,可知f′(0)=0。又f″(0)≠0,由第二充分条件得x=0是极值点。

  • 第23题:

    单选题
    可微函数f(x,y)在点(x0,y0)取得极小值,下列结论正确的是(  )。
    A

    f(x0,y)在y=y0处的导数等于零

    B

    f(x0,y)在y=y0处的导数大于零

    C

    f(x0,y)在y=y0处的导数小于零

    D

    f(x0,y)在y=y0处的导数不存在


    正确答案: C
    解析:
    由题意可知,fx′(x0,y0)=fy′(x0,y0)=0。则当x=x0时,f(x0,y)是一元可导函数,且它在y=y0处取得极小值。故f(x0,y)在y=y0处的导数为0。