圆盘某瞬时以角速度ω,角加速度α绕O轴转动,其上A、B两点的加速度分别为aA和aB,与半径的夹角分别为θ和φ。若OA=R,OB=R/2,则aA与aB,θ与φ的关系分别为:A.aA=aB,θ=φ B. aA=aB,θ=2φ C. aA=2aB,θ=φ D. aA=2aB,θ=2φ

题目
圆盘某瞬时以角速度ω,角加速度α绕O轴转动,其上A、B两点的加速度分别为aA和aB,与半径的夹角分别为θ和φ。若OA=R,OB=R/2,则aA与aB,θ与φ的关系分别为:

A.aA=aB,θ=φ B. aA=aB,θ=2φ
C. aA=2aB,θ=φ D. aA=2aB,θ=2φ


相似考题
更多“圆盘某瞬时以角速度ω,角加速度α绕O轴转动,其上A、B两点的加速度分别为aA和aB,与半径的夹角分别为θ和φ。若OA=R,OB=R/2,则aA与aB,θ与φ的关系分别为: ”相关问题
  • 第1题:

    均质圆盘质量为m,半径为R,在铅垂平面内绕O轴转动,图示瞬时角速度为ω,则其对O轴的动量矩和动能大小分别为:



    答案:D
    解析:

  • 第2题:

    图示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆盘中心O的水平轴转动,角速度为ω,角加速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。




    答案:C
    解析:

  • 第3题:

    图示均质杆AB的质量为m,长度为L,且O1A = O2B=R,O1O2=AB=L。当φ=60°时,O1A杆绕O1轴转动的角速度为ω,角加速度为α,此时均质杆AB的惯性力系向其质心C简化的主矢FI和主矩MIC的大小分别为:

    A. FI=mRα ,MIC=1/3mL2α B. FI=mRω2 ,MIC = 0


    答案:C
    解析:
    提示:AB是平动刚体。

  • 第4题:

    杆OA绕固定轴O转动,圆盘绕动轴A转动,已知杆长l=20cm,圆盘r=10cm,在图示位置时,杆的角速度及角加速度分别为w=4rad/s,ε=3rad/s2;圆盘相对于OA的角速度和角加速度分别为wr=6rad/s,εr=4rad/s2。则圆盘上M1点绝对加速度为( )。



    A.a1=363cm/s2
    B.a1=463cm/s2
    C.a1=563cm/s2
    D.a1=663cm/s2


    答案:A
    解析:
    牵连运动为转动,此时加速度合成时,将多一个科氏加速度

  • 第5题:

    半径r的圆盘以其圆心O为轴转动,角速度ω,角加速度为a。盘缘上点P的速度VP,切向加速度apr与法向加速度apn的方向如图,它们的大小分别为:

    A. vp=rω,aPr=ra,aPn =rω2 B. vp = rω,aPr=ra2 ,apn=r2ω
    C. vp=r/ω,apr=ra2,apn = rω2 D. vp=r/ω,apr= ra,apn=rω2


    答案:A
    解析:
    提示:根据定轴转动刚体上一点速度、加速度的公式。

  • 第6题:

    质量为m,半径为R的均质圆轮,绕垂直于图面的水平轴O转动,其角速度为w。在图示瞬时,角加速度为O,轮心C在其最低位置,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:




    答案:A
    解析:
    根据定义,惯性力系主矢的大小为:



    主矩的大小为:Joα=0。

  • 第7题:

    质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为ω,在图示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化, 其惯性力主矢和惯性力主矩的大小分别为:



    答案:A
    解析:
    提示:根据定轴转动刚体惯性力系简化的主矢和主矩结果,其大小为FI= mac ; MIO=JOα。

  • 第8题:

    图示曲柄连杆机构中,OA=r,AB=2r,OA、AB及滑块B质量均为m,曲柄以ω的角速度绕O轴转动,则此时系统的动能为:



    答案:A
    解析:
    提示:杆AB瞬时平移,杆OA做定轴转动,滑块B为质点,分别根据动能的定义求解。

  • 第9题:

    质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为ω,在图4-78示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为()。



    答案:A
    解析:
    提示:根据定轴转动刚体惯性力系简化的主矢和主矩结果,其大小FI=maC,MIO=JOα。

  • 第10题:

    杆OA=l,绕固定轴O转动,某瞬时杆端A点的加速度a如图4-41所示,则该瞬时杆OA的角速度及角加速度为( )。



    答案:B
    解析:
    提示:根据定轴转动刚体上一点加速度与转动角速度、角加速度的关系:an=ω2l,at=αl而题中 an= acosα,at =asinα。

  • 第11题:

    平面机构中AB杆水平而OA杆铅直,若B点的速度vB≠0,加速度aB=0。则此瞬时OA杆的角速度、角加速度分别为()。

    • A、ω=0,α≠0
    • B、ω≠0,α≠0
    • C、ω=0,α=0
    • D、ω≠0,α=0

    正确答案:D

  • 第12题:

    图示瞬时,作平面运动图形上A、B两点的加速度相等,即aA=aB,则该瞬时平面图形的角速度ω与角加速度α分别是:


    A. ω=0,α≠0
    B. ω≠0,α=0
    C. ω=0,α=0
    D.ω≠0,α≠0

    答案:C
    解析:
    提示:求平面图形上一点加速度的基点法,aB=aA+aBAn+aBAτ。

  • 第13题:

    杆OA绕固定轴O转动,长为l。某瞬时杆端A点的加速度a如图所示,则该瞬时OA的角速度及角加速度为(  )。




    答案:B
    解析:

  • 第14题:

    杆OA = l,绕固定轴O转动,某瞬时杆端A点的加速度a如图所示,则该瞬时杆OA的角速度及角加速度为:




    答案:B
    解析:
    提示:根据定轴转动刚体上一点加速度与转动角速度、角加速度的关系:an=ω2l,at=αl ,而题中an=acosα , at=asinα。

  • 第15题:

    图示均质杆AB的质量为m,长度为L,且O1A = O2B=R,O1O2=AB=L。当φ=60°时,O1A杆绕O1轴转动的角速度为ω,角加速度为α,此时均质杆AB的惯性力系向其质心C简化的主矢FI和主矩MIC的大小分别为:


    A. FI=mRα ,MI
    B=1/3mL2α
    C. FI=mRω2 ,MI
    D = 0


    答案:C
    解析:
    提示:AB是平动刚体。

  • 第16题:

    杆OA绕固定轴0转动,长为l。某瞬时杆端A点的加速度a如图所示,则该瞬时OA 的角速度及角加速度为:


    答案:C
    解析:
    解:选C

  • 第17题:

    均质直角曲杆OAB的单位长度质量为ρ,OA=AB=2l,图示瞬时以角速度ω、角加速度α绕轴O转动,该瞬时此曲杆对O轴的动量矩的大小为:



    答案:A
    解析:
    提示:根据定轴转动刚体的动量矩定义LO=JOω,JO=JOA+JAB。

  • 第18题:

    圆盘某瞬时以角速度ω,角加速度α绕O轴转动,其上A、B两点的加速度分别为aA和aB,与半径的夹角分别为θ和φ。若OA=R,OB=R/2,则aA与aB,θ与φ的关系分别为:


    A.aA=aB,θ=φ
    B. aA=aB,θ=2φ
    C. aA=2aB,θ=φ
    D. aA=2aB,θ=2φ

    答案:C
    解析:
    提示:定轴转动问题,aA = anA+aτA,aAn= Rω2,aAτ=Rα,

  • 第19题:

    如图4-71所示曲柄连杆机构中,OA=r,AB=2r,OA、 AB及滑块B质量均为m, 曲柄以ω的角速度绕O轴转动,则此时系统的动能为( )。



    答案:A
    解析:
    提示:杆AB瞬时平移,杆OA作定轴转动,滑块B为质点,分别根据动能的定义求解。

  • 第20题:

    如图4-53所示,平面机构在图示位置时,杆AB水平而杆OA铅直,若B点的速度vB≠0,加速度aB=0。则此瞬时杆OA的角速度、角加速度分别为( )。

    A.ω=0,α≠0 B.ω≠0,α≠0 C.ω=0,α=0 D.ω≠0,α=0


    答案:D
    解析:
    提示:平面运动的杆力AB,图示位置为瞬时平移。

  • 第21题:

    如图4-45所示,圆盘某瞬时以角速度ω,角加速度α绕轴O转动,其上A、B两点的加速度分别为aA和aB,与半径的夹角分别为θ和φ。若OA=R, OB = R/2,则aA与aB,θ与 φ 的关系分别为( )。

    A.aA=aB θ=φ B.aA=aB θ=2φ C.aA=2aB θ=φ D.aA=2aB θ=2φ


    答案:C
    解析:
    提示:定轴转动刚体内各点加速度的分布为 ,其中r为点到转动轴的距离;

  • 第22题:

    单选题
    平面机构中AB杆水平而OA杆铅直,若B点的速度vB≠0,加速度aB=0。则此瞬时OA杆的角速度、角加速度分别为()。
    A

    ω=0,α≠0

    B

    ω≠0,α≠0

    C

    ω=0,α=0

    D

    ω≠0,α=0


    正确答案: B
    解析: 暂无解析