曲线通过(1,1)点,且此曲线在[1,x]上所形成的曲边梯形面积的值等于该曲线终点的横坐标x与纵坐标y之比的两倍减去2,其中x> 1,y>0。曲线y =f(x)所满足的微分方程应是: A. y3=2(y-xy') B. 2xy'=2y C. 2xy'=-y3 D. 2xy=2y+y3

题目
曲线通过(1,1)点,且此曲线在[1,x]上所形成的曲边梯形面积的值等于该曲线终点的横坐标x与纵坐标y之比的两倍减去2,其中x> 1,y>0。曲线y =f(x)所满足的微分方程应是:
A. y3=2(y-xy') B. 2xy'=2y
C. 2xy'=-y3 D. 2xy=2y+y3


相似考题
参考答案和解析
答案:A
解析:
更多“曲线通过(1,1)点,且此曲线在[1,x]上所形成的曲边梯形面积的值等于该曲线终点的横坐标x与纵坐标y之比的两倍减去2,其中x> 1,y>0。曲线y =f(x)所满足的微分方程应是: ”相关问题
  • 第1题:

    曲线通过(1,1)点,且此曲线在[1,x]上所形成的曲边梯形面积的值等于该曲线终点的横坐标x与纵坐标y之比的两倍减去2,其中x>1,y>0。则当y x=1=1时的曲线方程为:


    答案:A
    解析:
    提示:把方程变形,得到可分离变量的方程,求通解、特解。解法如下:
    y3=2(y-xy') ,y3=2y-2xy', 2xy'=2y-y3

  • 第2题:

    求曲线y=x2与该曲线在x=a(a>0)处的切线与x轴所围的平面图形的面积.


    答案:
    解析:

    即y=2ax-a2,


  • 第3题:

    曲线Y=x2,x=0,x=2,Y=0所围成的图形的面积为(  ).



    答案:B
    解析:
    如右图所示,阴影部分的面积即为所求,由定积分的几何


  • 第4题:

    已知曲线L的方程为y=1-|x|(x∈[-1,1]),起点是(-1,0),终点为(1,0),则曲线积分________.


    答案:1、0.
    解析:

  • 第5题:

    曲线y=x3-4x+2在点(1,-1)处的切线方程为(  )

    A.x-y-2-0
    B.x-y=0
    C.x+y=0
    D.x+y-2=0

    答案:C
    解析:

  • 第6题:

    设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为( ).《》( )


    答案:B
    解析:
    本题考查的知识点为定积分的几何意义.由定积分的几何意义可知应选B.常见的错误是选C.如果画个草图,则可以避免这类错误.

  • 第7题:

    设f(x)=|x(1-x)|,则( ).《》( )

    A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x)的拐点
    B.x=0不是f(x)的极值点,但(0,0)是曲线y=f(x)的拐点
    C.x=0是f(x)的极值点,且(0,0)是曲线y=f(x)的拐点
    D.x=0不是f(x)的极值点,(0,0)也不是曲线y=f(x)的拐点

    答案:C
    解析:

  • 第8题:

    单选题
    设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。
    A

    f(0)是f(x)的极大值

    B

    f(0)是f(x)的极小值

    C

    点(0,f(0))是曲线y=f(x)的拐点

    D

    f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点


    正确答案: B
    解析:
    已知f″(x)+[f′(x)]2=x,方程两边对x求导得f‴(x)+2f″(x)·f′(x)=1,由f′(0)=0,则f″(0)=0,f‴(0)=1,故在点x=0的某邻域内f″(x)单调增加,即f″(0)与f″(0)符号相反,故点(0,f(0))是曲线y=f(x)的拐点。

  • 第9题:

    单选题
    曲线通过(1,1)点,且此曲线在[1,x]上所形成的曲边梯形面积的值等于该曲线终点的横坐标x与纵坐标y之比的二倍减去2,其中x>1,y>0。曲线y=f(x)所满足的微分方程应是:()
    A

    y3=2(y-xy′)

    B

    2xy′=2y

    C

    2xy′=-y3

    D

    2xy=2y+y3


    正确答案: C
    解析: 暂无解析

  • 第10题:

    单选题
    若曲线C上点的坐标都是方程f(x,y)=0的解,则下列判断中正确的是(  ).
    A

    曲线C的方程是f(x,y)=0

    B

    以方程f(x,y)=0的解为坐标的点都在曲线C上

    C

    方程f(x,y)=0的曲线是C

    D

    方程f(x,y)=0表示的曲线不一定是C


    正确答案: C
    解析:
    AC两项,说曲线C是方程f(x,y)=0的曲线,方程f(x,y)=0是曲线C的方程必须同时具备定义中的两个条件:①曲线上的点的坐标都是这个方程的解;②以这个方程的解为坐标的点都在这条曲线上.此题仅给出定义中的条件之一;B项,与题干所给条件无关.

  • 第11题:

    填空题
    设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____。

    正确答案: y-1=x/2
    解析:
    e2xy-cos(xy)=e-1方程两边对x求导,得e2xy(2+y′)+sin(xy)·(y+xy′)=0。当x=0时,y=1,y′=-2,因此,法线方程为y-1=x/2。

  • 第12题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    x-y=0

    B

    x+y=0

    C

    -x-y=0

    D

    -x+y=0


    正确答案: C
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。

  • 第13题:

    设曲线y=^e1?x2与直线x=-1的交点为P,则曲线在点P处的切线方程是(  )

    A.2x-y+2=0
    B.2x+y+1=0
    C.2x+y-3=0
    D.2x-y+3=0

    答案:D
    解析:


    @##

  • 第14题:

    求曲线y=x2,与该曲线在x=a(a>o)处的切线与x轴所围的平面图形的面积.


    答案:
    解析:

  • 第15题:

    如果曲线Y=f(x)在点(x,y)处的切线斜率与x2成正比,并且此曲线过点(1,-3)和(2,11),则此曲线方程为(  ).

    A.Y=3-2
    B.Y=2x3-5
    C.Y=x2-2
    D.Y=2x2-5

    答案:B
    解析:
    由曲线过点(1,-3)排除A、C项.由此曲线过点(2,11)排除D,故选B.Y=2x3-5显然过点(1,-3)和(2,11),且它在(x,Y)处的切线斜率为6x2,显然满足与x2成正比.

  • 第16题:

    设函数f(x)具有2阶连续导数,若曲线y=f(x)过点(0,0)且与曲线y=^x在点(1,2)处相切,则=________.


    答案:1、2(ln2-1)
    解析:

  • 第17题:

    非负连续函数f(x)满足f(0)=0,f(1)=1.已知以曲线y=f(x)为曲边,以[0,x]为底的曲边梯形,其面积与f(x)的n+1次幂成正比,则f(x)的表达式为


    答案:
    解析:

  • 第18题:



    (1)求曲线y=f(x);
    (2)求由曲线y=f(x),y=0,x=1所围图形绕x轴旋转一周所得旋转体体积.


    答案:
    解析:

  • 第19题:

    曲线通过(1,1)点,且此曲线在[1,x]上所形成的曲边梯形面积的值等于该曲线终点的横坐标x与纵坐标y之比的二倍减去2,其中x>1,y>0。曲线y=f(x)所满足的微分方程应是:()

    • A、y3=2(y-xy′)
    • B、2xy′=2y
    • C、2xy′=-y3
    • D、2xy=2y+y3

    正确答案:A

  • 第20题:

    填空题
    曲线y=y(x)经过原点且在原点处的切线与直线2x+y=6平行,而y=y(x)满足方程y″-2y′+5y=0,则此曲线的方程为____。

    正确答案: y=-exsin2x
    解析:
    所求曲线方程满足方程y″-2y′+5y=0,其特征方程为r2-2r+5=0,解得r12=1±2i。故方程y″-2y′+5y=0的通解为y=ex(c1cos2x+c2sin2x)。又因为所求曲线经过原点,且在原点处的切线与直线2x+y=6平行,故y(0)=0,y′(0)=-2,将其代入y=ex(c1cos2x+c2sin2x)得c1=0,c2=-1。故所求曲线方程为y=-exsin2x。

  • 第21题:

    填空题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为____。

    正确答案: x-y=0
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。

  • 第22题:

    单选题
    设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为(  )。
    A

    y+1=x/2

    B

    y-1=x/2

    C

    y+1=x

    D

    y-1=x


    正确答案: B
    解析:
    e2xy-cos(xy)=e-1方程两边对x求导,得e2xy(2+y′)+sin(xy)·(y+xy′)=0。当x=0时,y=1,y′=-2,因此,法线方程为y-1=x/2。

  • 第23题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    -x-y=0

    B

    x-y-1=0

    C

    x-y=0

    D

    x+y=0


    正确答案: A
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。