已知某消费者关于X、Y两商品的效用函数其中x、y分别对商品X、Y的消费量。 (1)求该效用函数关于X、y两商品的边际替代率表达式。 (2)在总效用水平为6的无差异曲线上,若x=3,求相应的边际替代率。 (3)在总效用水平为6的无差异曲线上,若x=4,求相应的边际替代率。 (4)该无差异曲线的边际替代率是递减的吗?

题目
已知某消费者关于X、Y两商品的效用函数

其中x、y分别对商品X、Y的消费量。 (1)求该效用函数关于X、y两商品的边际替代率表达式。 (2)在总效用水平为6的无差异曲线上,若x=3,求相应的边际替代率。 (3)在总效用水平为6的无差异曲线上,若x=4,求相应的边际替代率。 (4)该无差异曲线的边际替代率是递减的吗?


相似考题
更多“已知某消费者关于X、Y两商品的效用函数 ”相关问题
  • 第1题:

    消费者每周花360元买,Y两种商品。Px=3元,Py=2元,他的效用函数为U=2x2Y,在均衡状态下,他每周买X,Y各多少?


    参考答案:(1)消费者均衡的条件:(把钱用完)(2)X=80;Y=60。

  • 第2题:

    假定消费者A、B的效用函数分别为

    如果消费者A商品X的禀赋为

    y的禀赋为O;消费者B商品X的禀赋为0,y的禀赋为y。试推导A、B的交换契约曲线方程。


    答案:
    解析:

  • 第3题:

    某人的效用函数为

    收入为m,其中x和y的价格分别为p1,p2。 求出消费者均衡时,该人对x,y两商品的需求函数。


    答案:
    解析:

  • 第4题:

    假定某消费者的效用函数为

    两商品的价格分别为P1、P2,消费者的收入为M。求该消费者关于商品1和商品2的需求函数。


    答案:
    解析:

  • 第5题:

    某消费者消费X和Y两种商品所获得的效用函数为:U=XY+Y,预算约束为:PX X + PYY = I,求: X、Y的需求函数


    答案:
    解析:
    求解消费者效用最大化时要满足:

    通过构造拉格朗日辅助函数得:

    求得其一阶导数为并令其为0:

    得: X的需求函数为:

    Y的需求函数为:

  • 第6题:

    设某消费者的效用函数为柯布-道格拉斯类型的,即U=x^αy^β,商品x和商品y的价格分别为Px和Py,消费者收入为M,α和β为常数切α+β=1 (1)求该消费者关于商品x和商品y的需求函数。 (2)证明:当商品x和y的价格及消费者的收入均以相同的比例变化时,消费者对两商品的需求关系维持不变; (3)证明:该消费者效用函数中的参数α和β分别为商品x和商品y的消费支出占消费者收入的份额。


    答案:
    解析:

    综上,消费者效用函数中的参数α和β分别为商品x和商品y的消费支出占消费者收入的份额。

  • 第7题:

    设某消费者的效用函数为柯布一道格拉斯类型的,即

    商品x和商品y的价格分别为

    消费者的收人为M,a和β为常数,且a+ β=1。 (1)求该消费者关于商品X和商品y的需求函数。 (2)证明当商品X和商品y的价格以及消费者的收入同时变动一个比例时,消费者对两商品的需求关系维持不变。 (3)证明消费者效用函数中的参数a和β分别为商品x和商品y的消费支出占消费者收入的份额。


    答案:
    解析:

  • 第8题:

    假设在一个2×2的交换经济中消费者A和B交换两种商品z和y,消费者A的效用函数 是UA (XA,yA)=

    ,消费者B的效用函数是ub(xb,yB)=

    他们拥有两种商品的初始 禀赋分别是WA(40,60)和WB(40,40)。标准化商品x的价格Px=1,商品y的价格为P。 (1)计算消费者A和B对两种商品z和y的需求函数。 (2)计算该交换经济的均衡价格及均衡配置。


    答案:
    解析:
    (1)消费者A、B各自的收入为40+60P、40+40P。 由柯布一道格拉斯效用函数的性质可知A的需求函数为:

    B的需求函数为:

    (2)联立消费者A、B关于商品z的需求函数可得: xA+xB =40+50P=80 解得:P=4/5 可得:xA =44,yA =55,XB =36,yB=45。

  • 第9题:

    若某消费者的效用函数为U=XY4,他会把收入的多少用于商品Y上?


    正确答案: 解:由U=XY4,得MUX=Y4,MUY=4XY3,根据消费者均衡条件得Y4/PX=4XY3/PY,
    变形得:PXX=(1/4)PYY,将其代入预算方程得PYY=(4/5)M,
    即收入中有4/5用于购买商品Y。

  • 第10题:

    若消费者张某消费X和Y两种商品的效用函数U=X2Y2 ,张某收入为500元,X和Y的价格分别为PX =2元,PY=5元,求:       (1)张某的消费均衡组合点。  (2)若政府给予消费者消费X以价格补贴,即消费者可以原价格的50%购买X,则张某将消费X和Y各多少?  (3)若某工会愿意接纳张某为会员,会费为100元,但张某可以50%的价格购买X,则张某是否应该加入该工会?


    正确答案: (1)由效用函数U=X2Y2
    可得MUX=2XY2,MUY=2YX2
    消费者均衡条件为MUX/MUY=2XY2/2X2Y=Y/X,
    PX/PY=2/5
    所以Y/X=2/5,得到2X=5Y
    由张某收入为500元,得到500=2·X+5·Y
    可得X=125,Y=50
    即张某消费125单位X和50单位Y时,达到消费者均衡。
    (2)消费者可以原价格的50%购买X,意味着商品X的价格发生变动,预算约束线随之变动。消费者均衡条件成为:Y/X=1/5,500=l·X+5·Y
    可得X=250,Y=50
    张某将消费250单位X,50单位Y。
    (3)张某收入发生变动,预算约束线也发生变动。
    消费者均衡条件成为:Y/X=1/5,400=l×X+5×Y
    可得X=200,Y=40
    比较一下张某参加工会前后的效用。
    参加工会前:U=X2Y2=1252×502=39062500
    参加工会后:U=X2Y2=2002×402=64000000
    可见,参加工会以后所获得的总数效用较大,所以张某应加入工会。

  • 第11题:

    计算题:假设消费者张某对X和Y两种商品的效用函数为U=X2Y2,张某收入为500元,X和Y的价格分别为PX=2元,PY=5元,求:张某对X和Y两种商品的最佳组合。


    正确答案:MUX=2XY2,MUY=2YX2
    又因为MUX/PX=MUY/PY,PX=2元,PX=5元
    所以:2XY2/2=2YX2/5
    得X=2.5Y
    又因为:M=PXX+PYY,M=500
    所以:X=50,Y=125

  • 第12题:

    问答题
    若消费者张某消费X和Y两种商品的效用函数U=X2Y2 ,张某收入为500元,X和Y的价格分别为PX =2元,PY=5元,求:       (1)张某的消费均衡组合点。  (2)若政府给予消费者消费X以价格补贴,即消费者可以原价格的50%购买X,则张某将消费X和Y各多少?  (3)若某工会愿意接纳张某为会员,会费为100元,但张某可以50%的价格购买X,则张某是否应该加入该工会?

    正确答案: (1)由效用函数U=X2Y2
    可得MUX=2XY2,MUY=2YX2
    消费者均衡条件为MUX/MUY=2XY2/2X2Y=Y/X,
    PX/PY=2/5
    所以Y/X=2/5,得到2X=5Y
    由张某收入为500元,得到500=2·X+5·Y
    可得X=125,Y=50
    即张某消费125单位X和50单位Y时,达到消费者均衡。
    (2)消费者可以原价格的50%购买X,意味着商品X的价格发生变动,预算约束线随之变动。消费者均衡条件成为:Y/X=1/5,500=l·X+5·Y
    可得X=250,Y=50
    张某将消费250单位X,50单位Y。
    (3)张某收入发生变动,预算约束线也发生变动。
    消费者均衡条件成为:Y/X=1/5,400=l×X+5×Y
    可得X=200,Y=40
    比较一下张某参加工会前后的效用。
    参加工会前:U=X2Y2=1252×502=39062500
    参加工会后:U=X2Y2=2002×402=64000000
    可见,参加工会以后所获得的总数效用较大,所以张某应加入工会。
    解析: 暂无解析

  • 第13题:

    已知商品X的价格为8元,商品Y的价格为3元,若某消费者买了5个单位X和3个单位Y,此时X、Y的边际效用分别为20、14,那么为获得效用最大化实现消费者均衡,该消费者应该()。

    A、停止购买两种商品

    B、增加X的购买,减少Y的购买

    C、增加Y的购买,减少X的购买

    D、同时增加X、Y的购买


    参考答案:C

  • 第14题:

    某消费者消费X和Y两种商品所获得的效用函数为:U=XY+Y,预算约束为:PX X + PYY = I,求: 说明X和Y之间是替代品、互补品还是独立商品


    答案:
    解析:
    X与Y两种商品之间的需求交叉价格弹性为:

    也就是说随着商品X的价格上升,消费者将会增加对商品Y的购买。因此两种商品是替代品的关系。

  • 第15题:

    某消费者对商品x和商品y的效用函数为u(x,y)=x-0.5x2+y。商品x的价格为p,商品y的价格标准化为1。问题:假定商品x由一个具有规模报酬不变生产技术的垄断厂商提供,单位成本为0.4元。求产品定价、消费者剩余、生产者剩余。


    答案:
    解析:

  • 第16题:

    某消费者对商品x和商品y的效用函数为u(x,y)=x-0.5x2+y。商品x的价格为p,商品y的价格标准化为1。问题:写出该消费者对商品x的需求函数。


    答案:
    解析:
    为使效用最大化,则有MU/px=MU,y/py,可以得到:(1-x)/p=1,则x=1-p即为消费者对x的需求函数。

  • 第17题:

    如果消费者对商品X和商品Y的效用函数为U=XY,那么()。

    A.消费者对商品X的需求数量与商品Y的价格无关
    B.消费者对商品X的需求数量与商品Y的价格有关
    C.当商品X的价格变化时,消费者的价格消费曲线是一条水平线
    D.当商品X的价格变化时,消费者的价格一消费曲线是一条向上倾斜的直线

    答案:A,C
    解析:
    利用柯布一道格拉斯效用函数的特征可得商品x的需求函数为

    可以看出消费者对商品X的需求数量与商品Y的价格无关。当商品X的价格变化时,消费者不改变对Y的需求,因此消费者的价格一消费曲线是一条水平线。

  • 第18题:

    一个小规模经济只有两个消费者:小芳和小刚,小芳的效用函数为“(z,y) =x+154y2,小刚的效用函数为u(x,y)=x+7y。在一个帕累托最优消费组合上,小芳和小刚都会消费一定量的两种商品,则小芳会消费( )单位的y?

    A.22
    B.18
    C.121
    D.9

    答案:C
    解析:

  • 第19题:

    一个消费者有49元用以购买X和Y,X和Y都是离散商品,X的价格是每单位5元,y的价格是每单位11元,他的效用函数式U(X,Y)=3X2+6Y,他将如何选择他的消费组合?( )

    A.仅消费Y
    B.两种商品都消费,但消费X更多
    C.仅消费X
    D.两种商品都消费,但消费Y更多

    答案:C
    解析:

  • 第20题:

    某消费者对商品x和商品y的效用函数为u(x,y)=x-0.5x2+y。商品x的价格为p,商品y的价格标准化为1。问题:若x由两个厂商供给,单个产品成本为0.4,两个厂商之间进行古诺竞争,求均衡时的市场定价、生产者剩余和消费者剩余


    答案:
    解析:

  • 第21题:

    假设消费者张某对X和Y两种商品的效用函数为U=X2Y2,张某收入为500元,X和Y的价格分别为Px=2元,Py=5元,求:张某对X和Y两种商品的最佳组合。


    正确答案: MUx=2X*Y2,MUy=2Y*X2
    又因为MUx/Px=MUy/Py,Px=2元,Py=5元
    所以2X*Y2/2=2Y*X2/5
    得X=2.5Y
    又因为:M=PxX+PyY,M=500
    所以:X=50,Y=125

  • 第22题:

    效用函数U=min{X,Y}表明()

    • A、两个商品是完全互补的关系
    • B、两个商品既非互补也非替代
    • C、这样的效用函数不存在
    • D、两个商品是完全替代的关系

    正确答案:A

  • 第23题:

    问答题
    已知效用函数为U=㏒aX+㏒aY,预算约束为:PXX+PYY=M。求:①消费者均衡条件②X与Y的需求函数③X与Y的需求的点价格弹性

    正确答案: (1)由U=㏒aX+㏒aY,MUX=(1/X)lna;MUy=(1/y)lna;均衡条件为MUX/PX=MUy/PY,
    即,(1/X)lna/PX=(1/y)lna/PY,XPX=YPY
    (2)由PXX+PYY=M;XPX=YPY,得X与Y的需求函数分别为:X=M/2PX;Y=M/2PY
    (3)Edx=dx/dPx·Px/x=-M/2Px2·P/M/2Px=-1同理,Edy=-1
    解析: 暂无解析