假定某寡头厂商面临一条弯折的需求曲线,产量在0~30单位范围内时需求函数为P=60-0.3Q,产量超过30单位时需求函数为P=66 -0.50;该厂商的短期总成本函数为STC=0.005 Q3-0. 2Q2 +36Q +200。 (1)求该寡头厂商利润最大化的均衡产量和均衡价格。 (2)假定该厂商成本增加,导致短期总成本函数变为STC =0.005Q3 -0.2Q2 +50Q +200,求该寡头厂商利润最大化的均衡产量和均衡价格。 (3)对以上(1)和(2)的结果作出解释。

题目
假定某寡头厂商面临一条弯折的需求曲线,产量在0~30单位范围内时需求函数为P=60-0.3Q,产量超过30单位时需求函数为P=66 -0.50;该厂商的短期总成本函数为STC=0.005 Q3-0. 2Q2 +36Q +200。 (1)求该寡头厂商利润最大化的均衡产量和均衡价格。 (2)假定该厂商成本增加,导致短期总成本函数变为STC =0.005Q3 -0.2Q2 +50Q +200,求该寡头厂商利润最大化的均衡产量和均衡价格。 (3)对以上(1)和(2)的结果作出解释。



相似考题
更多“假定某寡头厂商面临一条弯折的需求曲线,产量在0~30单位范围内时需求函数为P=60-0.3Q,产量超过30单位时需求函数为P=66 -0.50;该厂商的短期总成本函数为STC=0.005 Q3-0. 2Q2 +36Q +200。 (1)求该寡头厂商利润最大化的均衡产量和均衡价格。 (2)假定该厂商成本增加,导致短期总成本函数变为STC =0.005Q3 -0.2Q2 +50Q +20”相关问题
  • 第1题:

    已知某个完全竞争行业中的单个厂商的短期成本函数是STC=0.1Q3—2Q2+15Q+10。求:

    (1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;

    (2)当市场价格下降为多少时,厂商必须停产;

    (3)厂商的短期供给函数。


    答案:
      解:(1)已知STC=0.1Q3 - 2Q2+15Q+10,P=55
      完全竞争厂商的短期均衡的条件是:P=MR=SMC
      SMC=dSTC/dQ=0.3Q2 - 4Q+15
      当P=55,即55=0.3Q2 - 4Q+15
      解方程得Q=20
      即短期均衡产量为20。利润等于总收益减总成本,
      即л=TR-TC=P×Q – (0.1Q3– 2Q2+15Q+10)
      将P=55,Q=20代入求得:л=790
      即厂商的短期均衡产量和利润分别为20和790。
      (2)厂商必须停产的条件是:价格等于AVC的最小值。
      因为TC=VC+FC,FC=10,
      所以VC=0.1Q3 -2Q2+15Q
      AVC=VC/Q=0.1Q2 -2Q+15;对Q求导,令dAVC/dQ=0,可得:dAVC/dQ=0.2Q-2=0,求得Q=10, 即当Q=10,AVC取最小值;此时,AVC=10-20+15=5
      也就是说,当价格下降到5时,厂商必须停产。
      (3)厂商的短期供给函数用SMC曲线大于和等于停止营业点的部分来表示。相应的,厂商的短期供给函数应该就是SMC函数,即SMC=dSTC/dQ=0.3Q2 - 4Q+15,但要满足Q10即大于停止营止点的产量。

  • 第2题:

    假定某厂商短期生产的边际成本函数为SMC(Q)=3Q2-8Q+100,且已知当产量Q=10时的总成本STC=2400,求相应的STC函数、SAC函数和AVC函数。


    参考答案:


    切入点:对总成本函数求导数,得到边际成本函数,反过来对边际成本函数积分,会得到总成本函数。本题给了SMC,积分后得到总成本函数,再根据给的其他条件确定固定成本的数值。最后几个函数就出来了。

  • 第3题:

    两寡头厂商面临需求曲线P=80-0. 4(q1+q2),厂商一的成本函数为C1 =4q1,厂商二的成本函数为C2 =0. 4q2,求寡头市场的竞争均衡和古诺均衡。


    答案:
    解析:
    在竞争性市场中,两个厂商都是价格接受者,并达到供给和需求相等的市场出清状态。厂商一的边际成本为MCl =4,厂商二的边际成本为MC2=0.8q。,达到竞争均衡时,有P=4,q1=5,q2=5。若两个厂商进行古诺竞争,对于厂商一来说,利润函数为:

    利润最大化的一阶条件为: 76-0. 8q1-0. 4q2 =0 可得厂商一的反应函数为: q1 =95-0. 5q2 同理可得厂商二的反应函数为:q2 =50-0. 25q1。 联立两个反应函数,可得q1 =80,q2 =30。 此时,价格P=36。

  • 第4题:

    假定某厂商短期生产的边际成本函数SMC( Q)=3Q2-8Q +100,而且已知当产量Q=10时的总成本STC= 2400.求相应的STC函数、SAC函数和AVC函数


    答案:
    解析:

  • 第5题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC =0.1Q3- 2Q2+150 +10 . (1)求当市场上产品的价格为P=55时,厂商的短期均衡产量和利润。 (2)当市场价格下降为多少时,厂商必须停产? (3)求厂商的短期供给函数。


    答案:
    解析:

  • 第6题:

    假设某完全竞争行业有200个相同的企业,企业的短期成本函数为TC =0. 2Q2+Q+15,市场需求函数为Qp= 2475 - 95P,厂商的长期总成本函数为LTC=0.1Q3-1. 2Q2+11.1Q,求: (1)市场短期均衡价格、产量及厂商利润。 (2)市场长期均衡价格与产量。 (3)说明是否会有厂商退出经营。


    答案:
    解析:
    (1)先求单个企业的供给函数:

    故A VC的最小值为1。 而MC的最小值也为1,故只有价格大于等于1,厂商才会供给商品。 此时单个企业的供给函数为P= MC =0.4Q +l,即Q=2.SP -2.5。 市场的供给函数为Qs=200Q =500P -500(P≥1),由QD=QS可得P=5。 市场均衡产量为2000单位,每个厂商产量为10单位。 单个厂商利润为5 x10 - (0.2 x102 +10+15) =5。

    将Q=6代入LAC,得IAC =7.5。 由长期均衡条件可得P=7. 5. (3)将P=7.5代入需求函数可得市场需求量为1762.5,而200个厂商的供给量为1200,再加上厂商短期利润为正,长期利润为O,所以没有厂商退出经营。

  • 第7题:

    某完全竞争厂商的短期边际成本函数为SMC=0.6Q-10,总收益函数为TR =38Q.而且已知产量Q=20时的总成本STC=260. 求:该厂商利润最大化时的产量和利润。


    答案:
    解析:
    由SMC=0.6Q -10可得STC=0.3Q2一10Q+ FC,又因为Q=20时的总成本STC= 260,代入可得FC= 340,从而STC =0.3Q2 -10Q +340。 由总收益函数TR= 38Q可得MR =38。 由利润最大化的条件MR= SMC可得Q=80,利润尺=1580 .

  • 第8题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。


    正确答案: (1)P=MR=55
    短期均衡时SMC=0.3Q2-4Q+15=MR=55
    0.3Q2-4Q-40=0
    ∴Q=20或Q=-20/3(舍去)
    利润=PQ-STC=55×20-(0.1×8000-2×400+15×20+10)=790
    (2)厂商停产时,P=AVC最低点。
    AVC=SVC/Q=(0.1Q3—2Q2+15Q)/Q=0.1Q2-2Q+15
    AVC最低点时,AVC′=0.2Q-2=0
    ∴Q=10
    此时AVC=P=0.1×100-2×10+15=5
    (3)短期供给函数为P=MC=0.3Q2-4Q+15(取P>5一段)

  • 第9题:

    已知某厂商的需求函数为Q=6750-50P,总成本函数为TC=12000+0.025Q2。求: (1)利润最大化时的产量和价格; (2)最大利润是多少?


    正确答案:(1)由Q=6752-50P,则P=135-1/50Q,Л=TR-TC=PQ-TC=(135-1/50Q)Q-12000-0.0025Q2,当利润最大化时Л=135-1/25Q+0.05Q=0,解得Q=1500,P=105
    (2)最大利润Л=TR-TC=PQ-TC=89250

  • 第10题:

    问答题
    已知完全竞争市场的需求函数为D=6300-400P,短期市场供给函数为SS=3000+150P,单个企业在LAC曲线最低点的价格为6,产量为50,单个企业的成本规模不变。  求:(1)市场短期均衡价格与均衡产量。  (2)判断该市场是否同时处于长期均衡,求行业内的厂商数量。  (3)如果市场的需求函数变为D′=8000-400P,短期供给函数SS′=4700+150P,求市场短期均衡的价格和产量。  (4)判断该市场是否同时处于长期均衡,并求行业内厂商数量。

    正确答案: (1)由D=SS得:6300-400P=3000+150P,解得市场短期均衡价格与均衡产量分别为:P=6,Q=3900。
    (2)P=6=LACmin,所以该市场处于长期均衡,行业内的厂商数量n=Q/50=78。
    (3)由D′=SS′得:8000-400P=4700+150P,解得市场短期均衡价格与均衡产量分别为:P′=6,Q′=5600。
    (4)P′=6=LACmin,所以该市场处于长期均衡,行业内的厂商数量n=Q′/50=5600/50=112。
    解析: 暂无解析

  • 第11题:

    问答题
    已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数LTC=Q3-12Q2+40Q。试求:(1)当市场商品价格是P=100,厂商实现MR=LMC时的产量,平均成本和利润;(2)该行业长期均衡时的价格和单个厂商的产量;(3)市场的需求函数为Q=660-15P时,行业长期均衡时的厂商数量。

    正确答案: (1)LTC′=LMC=3Q2-24Q+40=MR=P=100
    此时,3Q2-24Q+60=0,∴Q=10或Q=-2(舍去);LAC=Q2-12Q+40=20;利润=(P-LAC.Q=800
    (2)LAC最低点=PLAC′=2Q-12=0,∴Q=6LAC最低点=4
    即该行业长期均衡时的价格为4,单个厂商的产量为6
    (3)成本不变行业长期均衡时价格是市场均衡价格,所以市场需求为Q=660-15×4=600,则厂商数量为600/6=100
    解析: 暂无解析

  • 第12题:

    问答题
    已知某完全竞争行业中的单个厂商的短期成本函数为:STC=0.1Q3-2Q2+15Q+10(1)当市场上产品价格为 55时厂商的短期均衡产量和利润;(2)当市场价格下降为多少时厂商必须停产?(3)求厂商的短期供给函数。

    正确答案:
    由短期成本函数可得厂商的短期边际成本函数为:SMC=0.3Q2-4Q+15。
    完全竞争厂商实现短期均衡时,有SMC=P,即0.3Q2-4Q+15=55,解得:Q=20。
    此时,利润为π=PQ-STC=55×20-(0.1×203-2×202+15×20+10)=790。
    即均衡产量为20,利润为790。
    解析: 暂无解析

  • 第13题:

    设完全竞争市场的需求函数为Qd=2000-10P,供给函数为Qs=500+20P,厂商的短期成本函数STC=Q3-4Q2+15Q+50.求该厂商的均衡产量和最大利润。


    参考答案:厂商均衡时,有SMC=MR,完全竞争条件下,厂商的MR=P
    由Qs=500=20P,Qd=2000-10P
    联合后解得P=60,将P=50=MR代入SMC=MR,即3Q2-8Q+15=50
    解得后均衡产量Q=5
    于是最大利润∏=TR-TC
    =50×5-(53-4×52+15×5=50)
    =100

  • 第14题:

    假定某完全竞争行业有100个相同的厂商,单个厂商的短期总成本函数为.STC=Q2+6Q +20。 (l)求市场的短期供给函数。 (2)假定市场的需求函数为Qd=420 - 30P,求该市场的短期均衡价格和均衡产量。 (3)假定政府对每一单位商品征收1.6元的销售税,那么,该市场的短期均衡价格和均衡产量是多少?消费者和厂商各自负担多少税收?


    答案:
    解析:
    (1)单个厂商的边际成本MC =2Q +6。 由短期均衡条件可知P= MC,即P=2Q +6, 即Q =0.5P-3。 故市场的短期供给函数为Qs=100Q= 50P - 300。 (2)联立供给函数与需求函数,可得P=9,Q=150。 (3)征税后,联立函数:

    解得Pd=10,Q=120。 故市场短期均衡价格为10,均衡产量为120。 消费者承担1元税收,厂商承受0.6元税收。

  • 第15题:

    假定某厂商的需求函数为Q =100-P,平均成本函数为Ac=120/Q+2。 (1)求该厂商实现利润最大化时的产量、价格及利润量。 (2)如果政府对每单位产品征税8元,那么,该厂商实现利润最大化时的产量、价格及利润量又是多少?与(1)中的结果进行比较。


    答案:
    解析:
    (1)总成本函数为TC =120 +2Q, 构造利润函数π= PQ -rc, 即π=(100 -Q)Q- (120 +2Q)=- Q2 +98Q -120, dπ/dQ=-2Q+98=0 此时Q =49,P=51,利润π=2281。 (2)构造利润函数: π= PQ - TC - 8Q=-Q2+ 90Q - 120 dπ/dQ=2Q+90=0 此时Q =45,P=55,利润π=1905。 与(1)比较,(2)中的利润量较低,产量降低但价格上升。

  • 第16题:

    已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数为LTC= Q3 - 12Q2+40Q。试求: (1)当市场产品价格为P=100时,厂商实现MR= LMC时的产量、平均成本和利润。 (2)该行业长期均衡时的价格和单个厂商的产量。 (3)当市场的需求函数为Q=660 -15P时,行业长期均衡时的厂商数量。


    答案:
    解析:

    故Q=6是长期平均成本最小化的解。 以Q=6代入LAC( Q),得平均成本的最小值为LAC =62 -12 x6+40 =4。 由于完全竞争行业长期均衡时的价格等于厂商的最小的长期平均成本,所以,该行业长期均衡时的价格P=4,单个厂商的产量Q=6。 (3)由于完全竞争的成本不变行业的长期供给曲线是一条水平线,而且相应的市场长期均衡价格是固定的,它等于单个厂商的最低的长期平均成本,所以,本题的市场长期均衡价格固定为P=4。以P=4代入市场需求函数Q=660 -15P,便可以得到市场的长期均衡数量为Q=660 -15 x4= 600。 现已求得在市场实现长期均衡时,市场的均衡数量Q =600,单个厂商的均衡产量Q=6。于是,行业长期均衡时的厂商数量= 600÷6=100。

  • 第17题:

    已知某垄断厂商的短期总成本函数为STC =0. 6Q2+3Q +2,反需求函数为P=8 -0. 4Q: (1)求该厂商实现利润最大化时的产量、价格、收益和利润。 (2)求该厂商实现收益最大化时的产量、价格、收益和利润。 (3)比较(1)和(2)的结果。


    答案:
    解析:

  • 第18题:

    假设某完全竞争行业有500个相同的厂商,每个厂商的短期成本函数为:STC=O. 5Q2+Q+10。 (1)求完全竞争市场的短期供给函数。 (2)假设市场需求函数为QD=4 000-400P,求市场的均衡价格和产量。 (3)假定对每一件产品征收0.9元的税,新的市场均衡价格和产量又为多少?厂商和消费者的税收负担各为多少?


    答案:
    解析:
    (1)单个厂商的边际成本函数为:MC=Q+1,因此单个厂商的短期供给函数为 P=MC=Q+l,市场短期供给函数为Qs =500(P-1)。 (2)联立供给函数与需求函数: Qs=500(P-l) QD=4 000 - 400P Qs=QD 解得市场的均衡价格和产量分别为P=5,Q=2 000。 (3)假设对生产者征税。从量税为r=0.9。联立新的供给函数与需求函数: Qs =500(P-r-l) QD=4 000_400P Qs=QD 解得新的市场均衡价格和产量为P7—5.5,Q,=1 800。 厂商获得的价格为P'-r=4.6。厂商的税收负担为(5-4.6)×1 800=720,消费者的税收负担为(5. 5-5)×1 800=900。

  • 第19题:

    假定某完全竞争厂商的短期总成本函数为STC=0.04Q3-0.4Q2+8Q +9,产品的价格P=12.求该厂商实现利润最大化时的产量、利润量和生产者剩余。


    答案:
    解析:

  • 第20题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-3Q2+10Q+200,SMC=0.3Q2-6Q+10。当市场上产品价格P=100时,求厂商的短期均衡产量和利润。


    正确答案: P=SMC=MR
    0.3Q2-6Q+10
    短期均衡产量Q=30
    STC=500
    利润100*30-500=2500

  • 第21题:

    问答题
    计算题: 已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求: (1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润; (2)当市场上价格下降为多少时,厂商必须停产; (3)厂商的短期供给函数

    正确答案: (1)根据MC=MR=P
    MC=dSTC/dQ=0.3Q2-4Q+15=55=P
    解得Q=20
    利润=TR-STC=55*20-(0.1*203-2*202+15*20+10)=790
    (2)停业点为AVC的最低点
    AVC=TVC/Q=0.1Q2-2Q+15
    当Q=10时AVC最小且AVC=5所以P=5时厂商必须停产
    (3)短期供给函数即SMC函数且大于最低AVC对应产量以上的区间
    SMC=dSTC/dQ=0.3Q2-4Q+15
    所以短期供函数为0.3Q2-4Q+15(Q≥10)
    解析: 暂无解析

  • 第22题:

    问答题
    假设某垄断竞争厂商的产品需求函数为P=9400-4Q,成本函数为TC=4000+3000Q,求该厂商均衡时的产量、价格和利润。

    正确答案: 根据利润最大化原则MR=MC,MR=9400-8Q,MC=3000,得Q=800,P=6200,π=TR-TC=2556000
    解析: 暂无解析

  • 第23题:

    问答题
    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。

    正确答案: (1)P=MR=55
    短期均衡时SMC=0.3Q2-4Q+15=MR=55
    0.3Q2-4Q-40=0
    ∴Q=20或Q=-20/3(舍去)
    利润=PQ-STC=55×20-(0.1×8000-2×400+15×20+10)=790
    (2)厂商停产时,P=AVC最低点。
    AVC=SVC/Q=(0.1Q3—2Q2+15Q)/Q=0.1Q2-2Q+15
    AVC最低点时,AVC′=0.2Q-2=0
    ∴Q=10
    此时AVC=P=0.1×100-2×10+15=5
    (3)短期供给函数为P=MC=0.3Q2-4Q+15(取P>5一段)
    解析: 暂无解析