已知某垄断厂商利用一个工厂生产一种产品,其产品在两个分割的市场出售,它的成本函数为TC =O. 5Q2 +7Q,两个市场的需求函数分别为Q1=30 -0. 5P1、Q2=100 - 2P2. (1)求当该厂商实行三级价格歧视时,它追求利润最大化前提下的两个市场各自的销售量、价格,以及厂商的总利润(保留整数部分)。 (2)求当该厂商在两个市场上实行统一的价格时,它追求利润最大化前提下的销售量、价格,以及厂商的总利润(保留整数部分)。 (3)比较(1)和(2)的结果。

题目
已知某垄断厂商利用一个工厂生产一种产品,其产品在两个分割的市场出售,它的成本函数为TC =O. 5Q2 +7Q,两个市场的需求函数分别为Q1=30 -0. 5P1、Q2=100 - 2P2. (1)求当该厂商实行三级价格歧视时,它追求利润最大化前提下的两个市场各自的销售量、价格,以及厂商的总利润(保留整数部分)。 (2)求当该厂商在两个市场上实行统一的价格时,它追求利润最大化前提下的销售量、价格,以及厂商的总利润(保留整数部分)。 (3)比较(1)和(2)的结果。


相似考题
更多“已知某垄断厂商利用一个工厂生产一种产品,其产品在两个分割的市场出售,它的成本函数为TC =O. 5Q2 +7Q,两个市场的需求函数分别为Q1=30 -0. 5P1、Q2=100 - 2P2. (1)求当该厂商实行三级价格歧视时,它追求利润最大化前提下的两个市场各自的销售量、价格,以及厂商的总利润(保留整数部分)。 (2)求当该厂商在两个市场上实行统一的价格时,它追求利润最大化前提下的销售量、价格”相关问题
  • 第1题:

    假定某厂商的需求函数为Q =100-P,平均成本函数为Ac=120/Q+2。 (1)求该厂商实现利润最大化时的产量、价格及利润量。 (2)如果政府对每单位产品征税8元,那么,该厂商实现利润最大化时的产量、价格及利润量又是多少?与(1)中的结果进行比较。


    答案:
    解析:
    (1)总成本函数为TC =120 +2Q, 构造利润函数π= PQ -rc, 即π=(100 -Q)Q- (120 +2Q)=- Q2 +98Q -120, dπ/dQ=-2Q+98=0 此时Q =49,P=51,利润π=2281。 (2)构造利润函数: π= PQ - TC - 8Q=-Q2+ 90Q - 120 dπ/dQ=2Q+90=0 此时Q =45,P=55,利润π=1905。 与(1)比较,(2)中的利润量较低,产量降低但价格上升。

  • 第2题:

    某垄断厂商生产产品X的边际成本和平均成本均为常数c,所生产的X产品在两个分割的市场上销售,这两个市场的需求函数分别是P1=a1 – bq1和P2= a2 – bq2,其中,a1> a2>c>0,且3a2> a1+2c。 证明:(1) 该厂商无论实行三级价格歧视还是统一定价,总产量水平相同。(2)若统一定价时的价格为P,三级价格歧视时两个市场的价格分别是P1和P2,则P1>P>P2。


    答案:
    解析:
    如果厂商实行三级价格歧视定价,则其实现利润最大化时需要满足的条件是MR1=MR2=MC,且MR1=a 1– 2bq1 ,MR2= a2 –2 bq2则:

    则厂商得总产量

    如果厂商现在实行统一定价,则厂商面临得整个市场需求曲线由两个市场得需求曲线水平加总得到:

    厂商实现利润最大化时需满足MR=MC原则,即:

    则可得厂商统一定价时得产量为:

    可以看出不论是实行三级价格歧视还时统一定价厂商得产量总是相同得,均为

    根据(1)问当中得结论可知厂商: 厂商在实行三级价格歧视时在两个市场得价格分别为:

    厂商在实行统一定价时厂商出售商品得价格为:

    已知a1> a2>c>0,且3a2> a1+2c,则

    因此P1>P>P2

  • 第3题:

    已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数为LTC= Q3 - 12Q2+40Q。试求: (1)当市场产品价格为P=100时,厂商实现MR= LMC时的产量、平均成本和利润。 (2)该行业长期均衡时的价格和单个厂商的产量。 (3)当市场的需求函数为Q=660 -15P时,行业长期均衡时的厂商数量。


    答案:
    解析:

    故Q=6是长期平均成本最小化的解。 以Q=6代入LAC( Q),得平均成本的最小值为LAC =62 -12 x6+40 =4。 由于完全竞争行业长期均衡时的价格等于厂商的最小的长期平均成本,所以,该行业长期均衡时的价格P=4,单个厂商的产量Q=6。 (3)由于完全竞争的成本不变行业的长期供给曲线是一条水平线,而且相应的市场长期均衡价格是固定的,它等于单个厂商的最低的长期平均成本,所以,本题的市场长期均衡价格固定为P=4。以P=4代入市场需求函数Q=660 -15P,便可以得到市场的长期均衡数量为Q=660 -15 x4= 600。 现已求得在市场实现长期均衡时,市场的均衡数量Q =600,单个厂商的均衡产量Q=6。于是,行业长期均衡时的厂商数量= 600÷6=100。

  • 第4题:

    一个垄断厂商生产某种产品的成本函数为:C=5+3Q,将其产品在两个地理分割的市场上销售,这两个市场对该产品的需求函数分别为:P1=15-Q1,P2=25-2Q2。 假设企业被禁止使用价格歧视策略,那么该企业将采取何种价格策略?能够在两个市场各自销售多少产品?两个市场总共实现多少利润?在两个市场上分别造成多少福利损失?


    答案:
    解析:

  • 第5题:

    已知某垄断厂商的短期总成本函数为STC =0. 6Q2+3Q +2,反需求函数为P=8 -0. 4Q: (1)求该厂商实现利润最大化时的产量、价格、收益和利润。 (2)求该厂商实现收益最大化时的产量、价格、收益和利润。 (3)比较(1)和(2)的结果。


    答案:
    解析:

  • 第6题:

    完全竞争行中某厂商的成本函数为TC=Q3-6Q2+30Q+40试求: (1)假设产品价格为66元,利润最大化时的产量及利润总额。 (2)竞争市场供求发生变化,由此决定的新价格为30元,在新价格下,厂商是否会发生亏损?如果会,最小的亏损额为多少? (3)该厂商在什么情况下会停止生产? (4)厂商的短期供给函数。


    答案:
    解析:

  • 第7题:

    一厂商分别向东西部两个市场销售Q1与Q2单位的产品。已知厂商的总成本函数为C=5+3(Q1+Q2),东部市场对该产品的需求函数为P1=15-Q1,西部市场对该产品的需求函数为P2=25一2Q2。 如果政府规定,禁止在不同市场上制定不同的价格,求此时该厂商利润最大化时的P1、P2、Q1、Q2以及边际收益、总利润。


    答案:
    解析:

  • 第8题:

    一个歧视性垄断厂商在两个市场上销售,假设不存在套利机会,市场1的需求曲线为P1=100-Q1/2,而P2=100-Q2,垄断厂商的总产量用Q=Q1+Q2表示,垄断厂商的成本函数依赖于总产出,TC(Q)=Q2。在利润最大化时,下列说法正确的是(  )。
    Ⅰ.垄断厂商在市场1的产量Q1为30
    Ⅱ.垄断厂商在市场2的产量Q2为12.5
    Ⅲ.歧视性垄断的利润水平是1875
    Ⅳ.垄断厂商的总产量为37.5

    A.Ⅱ、Ⅲ、Ⅳ
    B.Ⅰ、Ⅱ
    C.Ⅰ、Ⅱ、Ⅲ、Ⅳ
    D.Ⅰ、Ⅲ、Ⅳ

    答案:A
    解析:

  • 第9题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。


    正确答案: (1)P=MR=55
    短期均衡时SMC=0.3Q2-4Q+15=MR=55
    0.3Q2-4Q-40=0
    ∴Q=20或Q=-20/3(舍去)
    利润=PQ-STC=55×20-(0.1×8000-2×400+15×20+10)=790
    (2)厂商停产时,P=AVC最低点。
    AVC=SVC/Q=(0.1Q3—2Q2+15Q)/Q=0.1Q2-2Q+15
    AVC最低点时,AVC′=0.2Q-2=0
    ∴Q=10
    此时AVC=P=0.1×100-2×10+15=5
    (3)短期供给函数为P=MC=0.3Q2-4Q+15(取P>5一段)

  • 第10题:

    问答题
    已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3—2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。

    正确答案: (1)P=MR=55
    短期均衡时SMC=0.3Q2-4Q+15=MR=55
    0.3Q2-4Q-40=0
    ∴Q=20或Q=-20/3(舍去)
    利润=PQ-STC=55×20-(0.1×8000-2×400+15×20+10)=790
    (2)厂商停产时,P=AVC最低点。
    AVC=SVC/Q=(0.1Q3—2Q2+15Q)/Q=0.1Q2-2Q+15
    AVC最低点时,AVC′=0.2Q-2=0
    ∴Q=10
    此时AVC=P=0.1×100-2×10+15=5
    (3)短期供给函数为P=MC=0.3Q2-4Q+15(取P>5一段)
    解析: 暂无解析

  • 第11题:

    问答题
    垄断厂商在两个分离的市场上销售产品,两个市场的需求函数分别为:Q1=105-P1,Q2=300-5P2。厂商的成本函数为:TC=140+15Q。如果厂商在两个市场上只能收取相同的价格,求利润最大时的售价。

    正确答案: 设厂商在两个市场上的产品价格均为P,即P1=P2=P,则市场需求Q=Q1+Q2=405-6P,从而反需求函数为P=(405-Q)/6,边际收益MR=67.5-Q/3。又边际成本MC=15,则根据厂商获得利润最大化的条件即MR=MC,得67.5-Q/3=15,解得Q=157.5,代入反需求函数得P=(405-157.5)÷6=41.25。因此,厂商利润最大时的售价为41.25。
    解析: 暂无解析

  • 第12题:

    问答题
    已知某完全竞争行业中的单个厂商的短期成本函数为:STC=0.1Q3-2Q2+15Q+10(1)当市场上产品价格为 55时厂商的短期均衡产量和利润;(2)当市场价格下降为多少时厂商必须停产?(3)求厂商的短期供给函数。

    正确答案:
    由短期成本函数可得厂商的短期边际成本函数为:SMC=0.3Q2-4Q+15。
    完全竞争厂商实现短期均衡时,有SMC=P,即0.3Q2-4Q+15=55,解得:Q=20。
    此时,利润为π=PQ-STC=55×20-(0.1×203-2×202+15×20+10)=790。
    即均衡产量为20,利润为790。
    解析: 暂无解析

  • 第13题:

    假定某垄断厂商生产一种产品,其总成本函数为TC=0.SQ2 +10Q +5,市场的反需求函数为P=70 -2Q: (1)求该厂商实现利润最大化时的产量、产品价格和利润量。 (2)如果要求该垄断厂商遵从完全竞争原则,那么,该厂商实现利润最大化时的产量、产品价格和利润量又是多少? (3)试比较(1)和(2)的结果,你可以得出什么结论?


    答案:
    解析:
    (1)厂商边际成本函数为MC=Q+10, 边际收益函数为MR =70 -4Q。 根据利润最大化原则MR =MC, 可知Q =12,P=46,利润π=PQ - TC= 355。 (2)根据完全竞争原则可知P=MC, 可得Q =20,P=30, 此时利润π= PQ - TC= 195。 (3)比较(1)和(2)可知,垄断条件下的利润更大,价格更高,但产量却比较低。

  • 第14题:

    假定某寡头市场有两个厂商生产同种产品,市场的反需求函数为P=100—Q,两个厂商的成本函数分别为TC1=20Q,TC2=0.5Q22。 (1)假定两厂商按古诺模型行动,求两厂商各自的产量和利润量,以及行业的总利润量。 (2)假定两厂商联合行动组成卡特尔,追求共同利润最大化,求两厂商各自的产量和利润量,以及行业的总利润量。 (3)比较(1)与(2)的结果。


    答案:
    解析:
    (1)对于第一个厂商而言: π1= PQ1 - TC1

  • 第15题:

    一个垄断企业面临两个分离的市场。市场1的需求函数为

    市场2的需求函数为

    垄断厂商生产的边际成本为1,不存在固定成本。 (1)假定垄断厂商可以实施三级价格歧视。求两个市场的利润最大化垄断价格和产量以及垄断厂商的总利润,两个市场的消费者剩余之和,以及总剩余之和。(总剩余定义为总消费者剩余加上总利润) (2)假定垄断厂商不能实施价格歧视而只能在两个市场收取统一的价格。求利润最大化的垄断价格和产量以及垄断厂商的总利润,两个市场的消费者剩余之和,以及总剩余之和。(提示:你需要确定垄断者在两个市场都销售是否是最优的) (3)对于本题中所描述的需求状况,三级价格歧视对社会有益吗?请加以解释。(注意:不能仅仅比较数值大小)


    答案:
    解析:
    (1)由已知可得两个市场的反需求函数分别为:

    对应的两个市场的边际收益分别为:

    若垄断厂商实施三级价格歧视,利用两个市场利润最大化原则



    (3)三级价格歧视下,厂商利润更大;在同一价格策略下,消费者剩余更大。但是,在三级价格歧视下,社会总剩余小于同一价格策略的社会总剩余。可以看出,实施三级价格歧视对于厂商和市场2的消费者是有益的,对于市场1的消费者是有害的。

  • 第16题:

    已知某完全竞争行业中的单个厂商的短期成本函数为STC =0.1Q3- 2Q2+150 +10 . (1)求当市场上产品的价格为P=55时,厂商的短期均衡产量和利润。 (2)当市场价格下降为多少时,厂商必须停产? (3)求厂商的短期供给函数。


    答案:
    解析:

  • 第17题:

    一个垄断厂商生产某种产品的成本函数为:C=5+3Q,将其产品在两个地理分割的市场上销售,这两个市场对该产品的需求函数分别为:P1=15-Q1,P2=25-2Q2。 该垄断厂商将针对两个市场制定何种价格策略?两个市场各自能够销售多少产品?厂商实现多少总利润?在两个市场分别造成多少福利损失?


    答案:
    解析:

  • 第18题:

    假设两个分割的市场,其市场需求曲线分别是

    某完全垄断厂商以MC=AC=C的常数边际成本C来生产。若该垄断者在这两个分割市场上实行三级价格歧视,其最优产出水平为QD;若该垄断者不实行价格歧视而统一供给这两个市场,其最优产出水平为QM。 (1)判断

    的相对大小 (2)解释该垄断者实行价格歧视的理由。


    答案:
    解析:
    本题主要考查三级价格歧视与统一定价条件下的产量水平以及利润水平的比较,常以计算题的形式出现,考生应重点掌握。本题与高鸿业《西方经济学(微观部分)》第7章“不完全竞争的市场”课后习题第6题非常相似,建议考生平时多做题,熟悉解题思路。

    (1)由已知可得两市场的反需求曲线分别为:

    利润最大化的一阶条件为:

    解得:

    从而可得:

    若垄断者不实行价格歧视,则P=P1=P2,此时总的市场需求函数为:Q=Q1+Q2=a1+a2-(b1+b2)P 则反市场需求函数为:

  • 第19题:

    一厂商分别向东西部两个市场销售Q1与Q2单位的产品。已知厂商的总成本函数为C=5+3(Q1+Q2),东部市场对该产品的需求函数为P1=15-Q1,西部市场对该产品的需求函数为P2=25一2Q2。 如果该厂商可以将东西部市场区分开,在不同的市场制定不同的价格出售,求该厂商利润最大化时的P1、P2、Q1、Q2以及边际收益、总利润。


    答案:
    解析:

  • 第20题:

    一个歧视性垄断厂商在两个市场上销售,假设不存在套利机会,市场1的需求曲线为P1=100-Q1/2,而P2=100-Q2,垄断厂商的总产量用Q=Q1+Q2表示,垄断厂商的成本函数依赖于总产出,TC(Q)=Q2,下列说法正确的有(  )。
    Ⅰ 垄断厂商在市场1的产量Q1为30
    Ⅱ 垄断厂商在市场2的产量Q2为12.5
    Ⅲ 歧视性垄断的利润水平是1875
    Ⅳ 垄断厂商的总产量为37.5


    A.Ⅱ、Ⅲ、Ⅳ
    B.Ⅰ、Ⅱ
    C.Ⅰ、Ⅱ、Ⅲ、Ⅳ
    D.Ⅰ、Ⅲ、Ⅳ

    答案:A
    解析:


    @##

  • 第21题:

    问答题
    计算题: 已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求: (1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润; (2)当市场上价格下降为多少时,厂商必须停产; (3)厂商的短期供给函数

    正确答案: (1)根据MC=MR=P
    MC=dSTC/dQ=0.3Q2-4Q+15=55=P
    解得Q=20
    利润=TR-STC=55*20-(0.1*203-2*202+15*20+10)=790
    (2)停业点为AVC的最低点
    AVC=TVC/Q=0.1Q2-2Q+15
    当Q=10时AVC最小且AVC=5所以P=5时厂商必须停产
    (3)短期供给函数即SMC函数且大于最低AVC对应产量以上的区间
    SMC=dSTC/dQ=0.3Q2-4Q+15
    所以短期供函数为0.3Q2-4Q+15(Q≥10)
    解析: 暂无解析

  • 第22题:

    问答题
    已知垄断厂商面临的需求曲线是Q=50-3P。  (1)求厂商的边际收益函数。  (2)若厂商的边际成本等于4,求厂商利润最大化的产量和价格。

    正确答案:
    (1)据题意,垄断厂商的反需求函数为:P=50/3-Q/3,所以,厂商的总收益函数为:
    TR=PQ=50Q/3-Q2/3
    则其边际收益函数为:MR=dTR/dQ=50/3-2Q/3。
    (2)由题可知,厂商的边际成本MC=4。根据厂商利润最大化的一般原则,有:MR=MC,即:
    50/3-2Q/3=4
    解得:Q=19。
    将Q=19代入反需求函数P=50/3-Q/3,得:P=50/3-19/3=31/3。
    即厂商利润最大化的产量为Q=19,价格为P=31/3。
    解析: 暂无解析

  • 第23题:

    问答题
    某垄断者的产品在两个分割市场出售,产品的成本函数和两个市场的需求函数分别为TC=Q2+10Q,Q1=32-0.4P1,Q2=18-0.1P2,其中Q=Q1+Q2。  (1)假设两个市场能实行差别价格,求解利润最大时的两个市场的售价、销售量和利润。  (2)假设两个市场只能索取相同价格,求解利润最大时的售价、销售量和利润。

    正确答案: (1)由成本函数可得出边际成本为:MC=TC′=2(Q1+Q2)+10。
    由需求函数可得出反需求函数分别为:
    P1=80-2.5Q1,P2=180-10Q2
    TR1=P1Q1=(80-2.5Q1)Q1,可得出:MR1=80-5Q1;
    TR2=P2Q2=(180-10Q2)Q2,可得出:MR2=180-20Q2
    根据三级价格歧视利润最大化均衡条件MR1=MR2=MC,即有:
    80-5Q1=180-20Q2=2(Q1+Q2)+10
    解得:Q1=8,Q2=7,Q=15。
    将销售量分别代入各自的反需求函数,可得:P1=60,P2=110。
    厂商利润:π=P1Q1+P2Q2-TC=60×8+110×7-152-10×15=875。
    (2)若两个市场只能卖同一价格,即P1=P2,则:
    Q=Q1+Q2=32-0.4P+18-0.1P=50-0.5P
    由需求函数可得出反需求函数为:P=100-2Q。
    TR=PQ=(100-2Q)Q,可得出:MR=100-4Q。
    根据利润最大化均衡条件MR=MC,解得:Q=15。
    将销售量代入反需求函数,可得:P=70。
    在这一价格下,Q1=4,Q2=11,说明当P=70时厂商在两个市场上都售出了产品。
    厂商利润π=PQ-TC=70×15-152-10×15=675。
    解析: 暂无解析