参考答案和解析
答案:
解析:
由题意可得: π=P·Q- TC
更多“已知某垄断厂商的反需求函数为P= 100 - 2Q +2 ”相关问题
  • 第1题:

    一位垄断厂商所面临的需求函数为Q=100-0.5p,边际成本为MC=40,如果垄断厂商实施完全价格歧视,那么利润最大时边际收益是( )。

    A.120

    B.60

    C.80

    D.40


    正确答案:D

  • 第2题:

    垄断厂商生产某一产品,产品的成本函数为C(q)=q2,市场反需求函数为p=120-q。试求:(1)垄断厂商利润最大化的产量和价格,并画图说明。(2)政府对垄断厂商征收100元的税收后,垄断厂商的产量和价格。(3)政府对垄断厂商单位产品征收从量税2元,垄断厂商的产量和价格。


    答案:
    解析:
    (1)垄断厂商的边际成本函数为MC= 2q,边际收益函数为MR =120 - 2q,根据垄断 厂商利润最大化原则MR =MC,可以解得垄断厂商利润最大化的产量和价格分别为q*一30、 p* =90。如图1 2所示,厂商在MR曲线和MC曲线的交点处确定利润最大化的产量q* =30, 再根据q’对应的市场需求曲线D上的点确定产品的价格p* =90。

    (2)当政府对垄断厂商征收100元税收后,垄断厂商的实际成本函数变为: C(q) =q2+100 但垄断厂商的边际成本函数仍为MC=2q,因而利润最大化的条件不变,因此垄断厂商利润最大 化的产量和价格仍然为q+ =30、p* =90。 (3)当政府对垄断厂商单位产品征收从量税2元后,垄断厂商的实际成本函数变为C(q)一qz+ 2q,边际成本函数则为MC=2q+2,边际收益函数仍为MR =120-2q,根据垄断厂商利润最大 化原则MR =MC,可以解得垄断厂商利润最大化的产量和价格分别为g’=29.5,p* =90.5。

  • 第3题:

    假定某垄断厂商生产一种产品,其总成本函数为TC=0.SQ2 +10Q +5,市场的反需求函数为P=70 -2Q: (1)求该厂商实现利润最大化时的产量、产品价格和利润量。 (2)如果要求该垄断厂商遵从完全竞争原则,那么,该厂商实现利润最大化时的产量、产品价格和利润量又是多少? (3)试比较(1)和(2)的结果,你可以得出什么结论?


    答案:
    解析:
    (1)厂商边际成本函数为MC=Q+10, 边际收益函数为MR =70 -4Q。 根据利润最大化原则MR =MC, 可知Q =12,P=46,利润π=PQ - TC= 355。 (2)根据完全竞争原则可知P=MC, 可得Q =20,P=30, 此时利润π= PQ - TC= 195。 (3)比较(1)和(2)可知,垄断条件下的利润更大,价格更高,但产量却比较低。

  • 第4题:

    假设一个垄断厂商面临的需求曲线为P =10 -2Q,成本函数为TC= Q2 +4Q。 (1)求利润极大时的产量、价格和利润。 (2)如果政府企图对该厂商采取限价措施迫使其达到完全竞争行业所能达到的产量水平,则限价应为多少?此时该垄断厂商是否仍有利润?


    答案:
    解析:

  • 第5题:

    假设厂商的生产函数为

    要素K、L价格分别为

    两种要素的投入数量均可以调整。 (1)计算总成本TC(Q)。 (2)若该厂商在产品市场是完全垄断者,且该市场需求曲线是P=2 000-100Q,计算垄断价格。


    答案:
    解析:

  • 第6题:

    已知某垄断厂商的短期总成本函数为STC =0. 1Q3 -6Q2+140Q +3000,反需求函数为P=150 -3. 25Q.


    答案:
    解析:

    于是,根据垄断厂商短期利润最大化的原则MR= SMC,有: 0. 3Q2 _12Q +140 =150 -6. 5Q, 整理得3Q2—55Q -100 =0,解得Q=20(负值舍去)。 以Q =20代入反需求函数,得P=150 -3. 25Q =150 -3. 25×20= 85。 所以,该垄断厂商的短期均衡产量为Q= 20,均衡价格为P=85。

  • 第7题:

    一个歧视性垄断厂商在两个市场上销售,假设不存在套利机会,市场1的需求曲线为P1=100-Q1/2,而P2=100-Q2,垄断厂商的总产量用Q=Q1+Q2表示,垄断厂商的成本函数依赖于总产出,TC(Q)=Q2,下列说法正确的有(  )。
    Ⅰ 垄断厂商在市场1的产量Q1为30
    Ⅱ 垄断厂商在市场2的产量Q2为12.5
    Ⅲ 歧视性垄断的利润水平是1875
    Ⅳ 垄断厂商的总产量为37.5


    A.Ⅱ、Ⅲ、Ⅳ
    B.Ⅰ、Ⅱ
    C.Ⅰ、Ⅱ、Ⅲ、Ⅳ
    D.Ⅰ、Ⅲ、Ⅳ

    答案:A
    解析:


    @##

  • 第8题:

    某垄断厂商的需求曲线为P=a-bQ ,则其MR曲线为()。

    • A、a-bQ
    • B、a-2bQ
    • C、2a-bQ
    • D、aQ-bQ2

    正确答案:B

  • 第9题:

    垄断厂商的需求曲线为Q=D(P)=100-2P;成本函数为C(Q)=2Q;则它的利润最大化价格是()


    正确答案:26

  • 第10题:

    问答题
    已知某厂商的需求函数为Q=6750-50P,总成本函数为TC=12000+0.025Q2。求: (1)利润最大化时的产量和价格; (2)最大利润是多少?

    正确答案: (1)由Q=6752-50P,则P=135-1/50Q,Л=TR-TC=PQ-TC=(135-1/50Q)Q-12000-0.0025Q2,当利润最大化时Л=135-1/25Q+0.05Q=0,解得Q=1500,P=105
    (2)最大利润Л=TR-TC=PQ-TC=89250
    解析: 暂无解析

  • 第11题:

    问答题
    某垄断厂商的反需求函数为P=150-3Q,成本函数为TC=15Q+0.5Q2。  (1)计算利润最大化的价格和产出。  (2)如果厂商追求销售收入最大化,其价格和产出又如何?  (3)政府决定价格不准高于40元,该厂商的产量为多少?会造成过剩还是短缺?

    正确答案: (1)根据已知条件,得总收益函数为TR=PQ=150Q-3Q2,边际收益函数为MR=150-6Q;边际成本函数MC=15+Q。根据MR=MC原则,即150-6Q=15+Q,解得Q=19.29,P=92.13。
    (2)如果厂商追求销售收入TR最大化,要求MR=0,即dTR/dQ=150-6Q=0,解得Q=25,P=150-3×25=75。
    (3)如果政府规定价格不许高于40元,当P=40时,Qd≈37。厂商追求利润最大化,边际收益MR=40,由MR=MC可得Qs=25。Qsd,此时会造成短缺。
    解析: 暂无解析

  • 第12题:

    问答题
    已知垄断厂商面临的需求曲线是Q=50-3P。  (1)求厂商的边际收益函数。  (2)若厂商的边际成本等于4,求厂商利润最大化的产量和价格。

    正确答案:
    (1)据题意,垄断厂商的反需求函数为:P=50/3-Q/3,所以,厂商的总收益函数为:
    TR=PQ=50Q/3-Q2/3
    则其边际收益函数为:MR=dTR/dQ=50/3-2Q/3。
    (2)由题可知,厂商的边际成本MC=4。根据厂商利润最大化的一般原则,有:MR=MC,即:
    50/3-2Q/3=4
    解得:Q=19。
    将Q=19代入反需求函数P=50/3-Q/3,得:P=50/3-19/3=31/3。
    即厂商利润最大化的产量为Q=19,价格为P=31/3。
    解析: 暂无解析

  • 第13题:

    一位垄断厂商所面临的需求函数为Q=100-(p/2),不变的边际成本是40。如果他不实施价格歧视,他的利润最大化的价格为()

    A.120

    B.60

    C.80

    D.40


    参考答案:D

  • 第14题:

    在某垄断竞争市场中,代表性厂商的长期成本函数为LTC =5Q3 -200Q2 +2700Q,市场的反需求函数为p= 2200A - 100Q,求:在长期均衡时,代表性厂商的产量和产品价格及A的数值。


    答案:
    解析:
    垄断竞争市场的长期均衡条件为M=LMC= SMC和AR= LAC= SAC。 由题意及上述条件可得:LMC =15Q2 -400Q+2700,LAC =5Q2—200Q +2700。 由市场的需求函数P= 2200A -100Q可得:MR= 2200A - 200Q,AR= 2200A -100Q。 联立上述方程可得:Q =10,P=1200,A=1。

  • 第15题:

    完全竞争市场中厂商长期成本函数为c(q)= 1000 +1Oq2(g>o),q=0,c=O.市场需求函数为p =1200 - 2q。 (1)求厂商长期供给函数。 (2)长期均衡时行业中有多少厂商? (3)求长期均衡时的消费者剩余。


    答案:
    解析:

  • 第16题:

    已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数为LTC= Q3 - 12Q2+40Q。试求: (1)当市场产品价格为P=100时,厂商实现MR= LMC时的产量、平均成本和利润。 (2)该行业长期均衡时的价格和单个厂商的产量。 (3)当市场的需求函数为Q=660 -15P时,行业长期均衡时的厂商数量。


    答案:
    解析:

    故Q=6是长期平均成本最小化的解。 以Q=6代入LAC( Q),得平均成本的最小值为LAC =62 -12 x6+40 =4。 由于完全竞争行业长期均衡时的价格等于厂商的最小的长期平均成本,所以,该行业长期均衡时的价格P=4,单个厂商的产量Q=6。 (3)由于完全竞争的成本不变行业的长期供给曲线是一条水平线,而且相应的市场长期均衡价格是固定的,它等于单个厂商的最低的长期平均成本,所以,本题的市场长期均衡价格固定为P=4。以P=4代入市场需求函数Q=660 -15P,便可以得到市场的长期均衡数量为Q=660 -15 x4= 600。 现已求得在市场实现长期均衡时,市场的均衡数量Q =600,单个厂商的均衡产量Q=6。于是,行业长期均衡时的厂商数量= 600÷6=100。

  • 第17题:

    已知某垄断厂商的短期总成本函数为STC =0. 6Q2+3Q +2,反需求函数为P=8 -0. 4Q: (1)求该厂商实现利润最大化时的产量、价格、收益和利润。 (2)求该厂商实现收益最大化时的产量、价格、收益和利润。 (3)比较(1)和(2)的结果。


    答案:
    解析:

  • 第18题:

    一个歧视性垄断厂商在两个市场上销售,假设不存在套利机会,市场1的需求曲线为P1=100-Q1/2,而P2=100-Q2,垄断厂商的总产量用Q=Q1+Q2表示,垄断厂商的成本函数依赖于总产出,TC(Q)=Q2。在利润最大化时,下列说法正确的是(  )。
    Ⅰ.垄断厂商在市场1的产量Q1为30
    Ⅱ.垄断厂商在市场2的产量Q2为12.5
    Ⅲ.歧视性垄断的利润水平是1875
    Ⅳ.垄断厂商的总产量为37.5

    A.Ⅱ、Ⅲ、Ⅳ
    B.Ⅰ、Ⅱ
    C.Ⅰ、Ⅱ、Ⅲ、Ⅳ
    D.Ⅰ、Ⅲ、Ⅳ

    答案:A
    解析:

  • 第19题:

    已知某完全垄断企业的需求函数为P=17-4Q,成本函数为TC=5Q+2Q2。 (1)计算企业利润最大化的价格和产出、利润。 (2)如果政府实行价格管制,按边际成本定价与按平均成本定价,价格分别是多少?厂商是否亏损?
    (1)当MR=MC 时获得最大利润  即   17-8=5+4Q
    所以Q=1;   P=13   π=TR-TC=PQ-TC=13×1-(5×1+2×12)=6
    (2) MC==5+4Q  AC=5+2Q  当P=AC 17-40=5+2Q    Q=2  P=5+2Q=4+4=9
    则:TC=10+8=18   TR=PQ=9×2=18     所以盈亏持平。
    当P=MC  17-4Q=5+4Q  Q=1.5 P=5+4Q=11  TC=5Q+2Q2=7.5+4.5=12
    TR=PQ=11×1.5=16.5    所以盈利。

  • 第20题:

    已知某厂商的需求函数为Q=6750-50P,总成本函数为TC=12000+0.025Q2。求: (1)利润最大化时的产量和价格; (2)最大利润是多少?


    正确答案:(1)由Q=6752-50P,则P=135-1/50Q,Л=TR-TC=PQ-TC=(135-1/50Q)Q-12000-0.0025Q2,当利润最大化时Л=135-1/25Q+0.05Q=0,解得Q=1500,P=105
    (2)最大利润Л=TR-TC=PQ-TC=89250

  • 第21题:

    垄断厂商的需求曲线为Q=D(P)=100-2P;成本函数为C(Q)=2Q;则它的最优产量水平是()


    正确答案:48

  • 第22题:

    问答题
    假设某垄断竞争厂商的产品需求函数为P=9400-4Q,成本函数为TC=4000+3000Q,求该厂商均衡时的产量、价格和利润。

    正确答案: 根据利润最大化原则MR=MC,MR=9400-8Q,MC=3000,得Q=800,P=6200,π=TR-TC=2556000
    解析: 暂无解析

  • 第23题:

    问答题
    已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数LTC=Q3-12Q2+40Q。试求:(1)当市场商品价格是P=100,厂商实现MR=LMC时的产量,平均成本和利润;(2)该行业长期均衡时的价格和单个厂商的产量;(3)市场的需求函数为Q=660-15P时,行业长期均衡时的厂商数量。

    正确答案: (1)LTC′=LMC=3Q2-24Q+40=MR=P=100
    此时,3Q2-24Q+60=0,∴Q=10或Q=-2(舍去);LAC=Q2-12Q+40=20;利润=(P-LAC.Q=800
    (2)LAC最低点=PLAC′=2Q-12=0,∴Q=6LAC最低点=4
    即该行业长期均衡时的价格为4,单个厂商的产量为6
    (3)成本不变行业长期均衡时价格是市场均衡价格,所以市场需求为Q=660-15×4=600,则厂商数量为600/6=100
    解析: 暂无解析