更多“设曲线y=y(x)过(0,0)点,M是曲线上任意一点,MP是法线段,P点在x轴上,已知MP的中点在抛物线,求此曲线的方程。”相关问题
  • 第1题:

    设曲线y=ln(1+x2),M是曲线上的点,若曲线在M点的切线平行于已知直线y-x+1=0,则点M的坐标是( )。

    A.(-2,ln5)
    B.(-1,ln2)
    C.(1,ln2)
    D.(2,ln5)

    答案:C
    解析:
    在D选项中,利用函数在一点的导数的几何意义及平行的已知条件确定点的坐标

  • 第2题:

    曲线 y = x3 ? 6x上切线平行于 x 轴的点是:
    (A)(0,0)

    (D)(1,2)和(-1,2)


    答案:C
    解析:
    解:选 C。
    切线的斜率为 y ' = 3x2 ? 6,切线平行于x 轴,即斜率为 0,得 y ' = 3x2 ? 6 = 0,x =

  • 第3题:

    设L为连接(0,0)点与(1,1)点的抛物线y =x2 ,则对弧长的曲线积分


    答案:A
    解析:
    提示:利用对弧长的曲线积分方法计算。

  • 第4题:

    已知曲线C为y=2x2及直线L为y=4x.
    ①求由曲线C与直线L所围成的平面图形的面积S;
    ②求曲线C的平行于直线L的切线方程.


    答案:
    解析:
    画出平面图形如图l一3—4阴影所示.
    图1—3—3

    图1—3—4

  • 第5题:

    已知x=-1是函数(x)=ax3+bx2的驻点,且曲线y=(x)过点(1,5),求a,b的值.


    答案:
    解析:
    '(x)=3ax2+2bx,'(-1)=3a-2b=0,再由(1)=5得a+b=5,联立解得a=2,b=3.

  • 第6题:

    设函数y(x)是微分方程满足条件y(0)=0的特解.
      (Ⅰ)求y(x);
      (Ⅱ)求曲线y=y(x)的凹凸区间及拐点.


    答案:
    解析:

  • 第7题:

    已知函数f(x,y)=x+y+xy,曲线C:x^2+y^2+xy=3,求f(x,y)在曲线C上的最大方向导数.


    答案:
    解析:
    【分析】函数在一点处沿梯度方向的方向导数最大,进而转化为条件最值问题
    函数f(x,y)=x+y+xy在点(x,y)处的最大方向导数为

    构造拉格朗日函数

    (2)-(1)得(y-x)(2+λ)=0
    若y=x,则y=x=±1,若λ=-2,则x=-1,y=2或x=2,y=-1.
    把两个点坐标代入中,f(x,y)在曲线C上的最大方向导数为3.
    【评注】此题有一定新意,关键是转化为求条件极值问题.

  • 第8题:

    设l是曲线y=x2+3在点(1,4)处的切线,求由该曲线,切线l及Y轴围成的平面图形的面积S.


    答案:
    解析:
    故切线l的方程为y=2x+2.

  • 第9题:

    曲线y=|x|在(0,0)点处的切线就是X轴。


    正确答案:错误

  • 第10题:

    设C为抛物线y2=x上从点0(0,0)到点P(1,1)的一段弧,则曲线积分的值是().

    • A、2
    • B、1/2
    • C、1/3
    • D、1/4

    正确答案:C

  • 第11题:

    单选题
    设C为抛物线y2=x上从点0(0,0)到点P(1,1)的一段弧,则曲线积分的值是().
    A

    2

    B

    1/2

    C

    1/3

    D

    1/4


    正确答案: C
    解析: 暂无解析

  • 第12题:

    单选题
    若曲线C上点的坐标都是方程f(x,y)=0的解,则下列判断中正确的是(  ).
    A

    曲线C的方程是f(x,y)=0

    B

    以方程f(x,y)=0的解为坐标的点都在曲线C上

    C

    方程f(x,y)=0的曲线是C

    D

    方程f(x,y)=0表示的曲线不一定是C


    正确答案: C
    解析:
    AC两项,说曲线C是方程f(x,y)=0的曲线,方程f(x,y)=0是曲线C的方程必须同时具备定义中的两个条件:①曲线上的点的坐标都是这个方程的解;②以这个方程的解为坐标的点都在这条曲线上.此题仅给出定义中的条件之一;B项,与题干所给条件无关.

  • 第13题:

    曲线y=x3 - 6x上切线平行于轴的点是:


    答案:C
    解析:
    提示:x轴的斜率K=0,在曲线y=x3-6x上找出一点在该点切线的斜率也为K =0,求导,y=x3-6x,y‘=3x2-6

  • 第14题:

    已知曲线L的参数方程是,则曲线L上t=π/2处的切线方程是:
    A. x+y=π B.x-y=π-4 C. x-y=π D.x+y=π-4


    答案:B
    解析:
    利用点斜式写出切线方程。

  • 第15题:

    设曲线y=^e1?x2与直线x=-1的交点为P,则曲线在点P处的切线方程是(  )

    A.2x-y+2=0
    B.2x+y+1=0
    C.2x+y-3=0
    D.2x-y+3=0

    答案:D
    解析:


    @##

  • 第16题:

    求曲线y=e-2x在点M(0,1)处的法线方程.


    答案:
    解析:

  • 第17题:

    曲线y=x3-3x上切线平行于x轴的点是()

    A.(0,0)
    B.(1,2)
    C.(-1,2)
    D.(-1,-2)

    答案:C
    解析:
    【考情点拨】本题考查了曲线上一点处的切线的知识点.【应试指导】由y=x3-3x得y'=3x2-3,令y'=0,得x=±1.经计算x=-1时,y=2;x=1时,y=-2,故选C.

  • 第18题:

    设函数f(x)具有2阶连续导数,若曲线y=f(x)过点(0,0)且与曲线y=^x在点(1,2)处相切,则=________.


    答案:1、2(ln2-1)
    解析:

  • 第19题:

    已知矩阵求曲线y2=x+y=O在矩阵M-1对应的线性变换作用下得到的曲线方程。


    答案:
    解析:

  • 第20题:

    设f(x)=|x(1-x)|,则( ).《》( )

    A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x)的拐点
    B.x=0不是f(x)的极值点,但(0,0)是曲线y=f(x)的拐点
    C.x=0是f(x)的极值点,且(0,0)是曲线y=f(x)的拐点
    D.x=0不是f(x)的极值点,(0,0)也不是曲线y=f(x)的拐点

    答案:C
    解析:

  • 第21题:

    已知点P=(18,3)在椭圆曲线y2mod23=(x3+x+1)mod23上,求-P的值且-P在曲线上()

    • A、(-18,-3)
    • B、(18,-3)
    • C、(-18,3)
    • D、(18,20)

    正确答案:D

  • 第22题:

    问答题
    已知曲线y=x3-3x2-1,过点(1,-3)作其切线,求切线方程。

    正确答案: 解:y′=3x2-6x,当x=1时,y=1-3-1=-3,即点(1,-3)在曲线上。可知此切线的斜率为k=3×12-6×1=-3,由点斜式可知,此切线的方程为y-(-3)=-3(x-1)即为y=-3x。
    解析: 暂无解析

  • 第23题:

    单选题
    切线支距法测设圆曲线带有缓和曲线的曲线是以()为坐标原点,以切线为X轴,过原点的半径为Y轴,利用缓和曲线和圆曲线上各点的X轴、Y轴坐标测设曲线。
    A

    ZH点或HZ点

    B

    HY点或YH点

    C

    QZ点

    D

    JD点


    正确答案: B
    解析: 暂无解析