将一个表面漆有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中,一点红色也没有的小正方体有4块,那么原来的长方体的体积为( )立方厘米A.180 B.54 C.54或48 D.64 E.180或64

题目
将一个表面漆有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中,一点红色也没有的小正方体有4块,那么原来的长方体的体积为( )立方厘米

A.180
B.54
C.54或48
D.64
E.180或64

相似考题
更多“将一个表面漆有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中,一点红色也没有的小正方体有4块,那么原来的长方体的体积为( )立方厘米”相关问题
  • 第1题:

    把一个64cm×40cm×24cm的长方体切成若干个完全相同的小正方体,并使这些小正方体的表面积总和最小,则小正方体的表面积总和为( )。

    A.73280cm2

    B.54680cm2

    C.69450cm2

    D.46080cm2


    正确答案:D
    要使这些小正方体的表面积总和最小,那么小正方体的边长要尽可能大。64、40、24的最大公约数为B,因此小正方体的边长为8cm,共有64×40×24÷83=120块。表面积总和为6×82×120=46080cm2

  • 第2题:

    一个体积为l立方米的立方体,把它切成1立方厘米的小正方体,然后把这些小正方体排成一列,组成一个长方体。这个长方体长多少厘米?( )

    A.10

    B.1000000

    C.200

    D.1000


    正确答案:B

    1立方米的正方体可以切割成10000001立方厘米的正方体,此时切割成的小正方体的边长为1厘米,则1000000个小正方体排成的长方体的长为1000000厘米。

  • 第3题:

    把一个64Cmx40Cmx24Cm的长方体切成若干个完全相同的小正方体,并使这些小正方体的表面积总和最小,则小正方体的表面积总和为( )。

    A.73280cm2

    B.54680cm2

    C.69450cm2

    D.46080cm2


    正确答案:D
    要使这些小正方体的表面积总和最小,那么小正方体的边长要尽可能大。64、40、24的最大公约数为8,因此小正方体的边长为8cm,共有64×40×24÷83=120块。表面积总和为6×82×120=46080cm2

  • 第4题:

    将一个表面积为36平方米的正方体等分成两个长方体,再将这两个长方体拼成一个大长方体,则大长方体的表面积是( )

    A.24平方米 B.30平方米 C.36平方米 D.42平方米


    正确答案:D
    将原正方体等分后重新组合成长方体,则表面积一定比原来大,故D正确。当然也可以计算得出答案。

  • 第5题:

    某加工厂要将一个表面积为384平方厘米的正方体金属原材料切割成体积为8立方厘米的小正方体半成品,如果不计损失,这样的小正方体可以加工的个数为

    A. 64
    B. 36
    C. 27
    D. 16

    答案:A
    解析:

  • 第6题:

    1000个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后,再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是多少个:
    A 490
    B 488
    C 484
    D 480


    答案:B
    解析:

  • 第7题:

    一个长方体木块恰能切割成五个正方体木块,五个正方体木块表面积之和比原来的长方体木块的表面积增加了200cm2。则长方体木块的体积为多少?

    A.625cm3
    B.125cm3
    C.500cm3
    D.750cm3

    答案:A
    解析:
    第一步,本题考查几何问题,属于立体几何类。
    第二步,如图所示,长方体分为5个小正方体,增加了4×2=8(个)阴影部分小正方形的面积,则每个小正方形面积为200÷8=25(cm2),边长为5cm。那么大长方体的体积为5×25×5=625(cm3)。

    因此,选择A选项。

  • 第8题:

    一千个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是( )个。

    A.490
    B.488
    C.484
    D.480

    答案:B
    解析:
    分析:没有涂色的小正方体都在大正方体的内部,由此先借助正方体的体积公式求出没有涂色的小正方体的个数即可解答.

    解答:解:没有涂色的小正方体:

    (10-2)×(10-2)×(10-2)=8×8×8=512(个),

    所以至少一面涂色的小正方体:1000-512=488(个)

  • 第9题:

    把若干个体积相等的正方体拼成一个大正方体,在表面涂上红色,已知一面涂色的小正方体有96个,则两面涂色的小正方体有( )个

    A.48
    B.60
    C.64
    D.24
    E.32

    答案:A
    解析:
    一面涂色的小正方体位于大正方体的面上(除去機上的),每个面有4×4=16(个),令小正方体的边长为1,则大正方体的边长为6;两面涂色的小正方体位于大正方体的機上(除去8个角),每条棱上有4个,故总个数为4×12=48

  • 第10题:

    将一个8厘米×8厘米×1厘米的白色长方体木块的外表面涂上黑色颜料,然后将其切成64个棱长1厘米的小正方体,再用这些小正方体堆成棱长4厘米的大正方体,且使黑色的面向外露的面积要尽量大,问大正方体的表面上有多少平方厘米是黑色的?

    A. 88
    B. 84
    C. 96
    D. 92

    答案:A
    解析:
    白色长方体可以看做64个小正方体平铺,由4个角,24个棱和36个中间小正方体构成,角上的4个小正方体有4个面被刷成了黑色,棱上的24个小正方体连续的3个面被刷成了黑色,中间的36个小正方体相对的2个面被刷成了黑色;拼成的大正方体有8个角,24个棱和24个单面,拼接时有4个角需用之前棱上的小正方体替换,每替换一次缺一个黑色面,角上共缺了4个;由于4个棱上的正方体替换到了角上,此时棱上又少了4个小正方体,需用对面为黑色的小正方体替换,每替换一次缺一个黑色面,棱上共缺了4个。大正方体的表面积为4×4×6=96平方厘米,大正方体的表面上共有96-4-4=88平方厘米是黑色的。因此,本题选A。

  • 第11题:

    边长为4的正方体木块,各面均涂成红色,将其锯成64个边长为1的小正方体,并将它们搅匀混在一起,随机抽取一个小正方体,恰有两面为红色的概率是( )



    答案:A
    解析:
    锯成64个边长为1的小正方体后,涂色的面有以下几种情况:涂3面的小正方体分别在大正方体的8个顶点处,共有8个;涂2面的小正方体分别是大正方体的每条棱的中间的2个,而大正方体共有12条棱,那么,涂2面的小正方体有2×12=24个;涂1面的小正方体分别是每个面的中间的4个,而大正方体共有6个面,那么,涂1面的小正方体有4×6=24个;6个面都没有涂色的小正方体有64-8-24-24=8个,则随机抽取一个小正方体,恰有两面为红色的概率是

  • 第12题:

    一个正方体木块的体积为1000厘米³,现要把它锯成八块,同样大小的正方体小木块,小木块的棱长是多少?


    锯成8块之后,每小块的正方体体积为1000/8=125厘米³

     

    设小木块的棱长是x,则

    x³=125,x=5厘米

     

  • 第13题:

    如果把一个体积为125立方厘米的正方体铁块切割成体积相等的8个小正方体,则每个小正方体铁块的表面积是:

    A.6.25平方厘米

    B.15.625平方厘米

    C.16.5平方厘米

    D.37.5平方厘米


    正确答案:D

  • 第14题:

    一个正方体和一个长方体拼成一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方米。原来正方体的表面积是多少平方厘米?


    正确答案:750000平方厘米

  • 第15题:

    210个边长为1厘米的小正方体组成的长方体,其表面积最小为多少?( )

    A.
    B.
    C.
    D.

    答案:A
    解析:
    该长方体体积为210立方厘米,根据体积一定的情况下越接近球体表面积越小,则其长、宽、高应尽量接近。210=2×3×5×7,当三个棱长分别为5、6、7时,表面积最小是2×(5×6+5×7+6×7)=214平方厘米。

  • 第16题:

    用n个棱长是a cm的小正方体可以摆出“一”字形长方体,如图,n个小正方体拼在一起 时,这个长方体表面积是_______cm2。


    答案:
    解析:
    (4n+2)a2。解析:n个小正方体如题干图中所示拼在一起时,组成长为na,宽为a,高为a的长方体,所以表面积为(4n+2)a2 cm2。

  • 第17题:

    有一批边长为1厘米的小正方体,其中一面涂红色的有400个,相邻两面涂红色的有30个,相邻三面涂红色的有1个,其余小正方体各面都没有涂颜色。用这一批小正方体组成一个大正方体,要求这个大正方体有三个面是红色,且这三个面两两相邻,其余的三个面没有颜色。假如没有涂颜色的小正方体数量足够多,那么这个正方体的边长最大是( )厘米。

    A.10
    B.11
    C.12
    D.13

    答案:B
    解析:
    第一步,本题考查几何问题,属于几何构造。
    第二步,让三面都涂色的小正方体作为一个顶角,然后与其相相连的三个棱均放置相邻两个面涂色的小正方体,每条棱上各10个,此时需要需要单面涂色的小正方体10×10×3=300(个),可以满足,故边长最长为10+1=11(厘米)。

  • 第18题:

    将一个表面积为72平方米的正方体平分为两个长方体,再将这两个长方体拼成一个大长方体,则大长方体的表面积是多少平方米?

    A.56
    B.64
    C.72
    D.84

    答案:D
    解析:
    第一步,本题考查几何问题,属于立体几何类。
    第二步,如下图所示,立方体变为长方体。正方体一个面面积为72÷6=12(平方米),则表面积的变化为:增加了两个侧面为12×2=24(平方米),侧面的一半减少了两个,减少了12÷2×2=12(平方米)。故最终增加了24-12=12(平方米),表面积为72+12=84(平方米)。

  • 第19题:

    将长、宽、高分别为12、9、6的长方体切割成正方体,且切割后无剩余,则能切割成相同正方体的最少个数为( )

    A.3
    B.6
    C.24
    D.96
    E.648

    答案:C
    解析:
    正方体的棱长应是长方体棱长的公约数,想要正方体最少,则找最大公约数即3,因此得到的正方体个数为

  • 第20题:

    小学数学《长方体和正方体的表面积》
    一、考题回顾
    题目来源:5月18日 上午 天津市 面试考题
    试讲题目
    1.题目:长方体和正方体的表面积
    2.内容:




    3.基本要求:
    (1)10分钟试讲;
    (2)引导学生理解长方体和正方体的表面积计算公式;
    (3)要有适当板书。
    答辩题目
    1.本节课的教学目标是什么?
    2.如何做好课堂提问?


    答案:
    解析:
    二、考题解析
    【教学过程】
    (一)导入新课
    课件出示:丰富的生活场景;一些长方体、正方体纸盒;漂亮的礼品盒。
    提出问题:
    (1)前面我们看到的主要是什么形状的物体?
    (2)单独出示一个漂亮的礼品盒(出示图:长6厘米、宽5厘米、高4厘米)。想做一个这样的纸盒,至少需要多少硬纸板?
    引出课题。
    (二)新知探索
    1.表面积的概念
    提问:如果把手中的长方体纸盒、正方体纸盒展开会是什么样子呢?
    学生操作,得出如下图:



    引导学生小组合作,在展开图中标出原来长方体、正方体的上、下、前、后、左、右6个面,并观察。
    提问:哪些面的面积相等?每个面的长和宽与长方体的长宽高有什么关系?
    预设:长方体的上下面积、前后面积、左右的面相等。正方体的六个面都相等。
    教师给出表面积的概念:长方体或正方体6个面的总面积,叫做它的表面积。
    2.表面积公式
    例1:做一个微波炉的包装箱,至少需要多少平方米的硬纸板?



    引导学生表示出上下、前后、左右面的面积,得出长方体表面积的计算方法。
    例2:一个正方体墨水盒,棱长为6.5cm。制作这个墨水盒至少需要多少平方厘米的硬纸板?



    引导学生通过合作,自己去探求正方体表面积的计算方法,通过对微波炉的包装,引导学生掌握正确计算长方体面积的计算方法。
    总结:长方体表面积=(长×宽+长×高+宽×高)×2;正方体表面积=边长×边长×6
    (三)课堂练习
    做一做题目:
    要做这样一个衣柜的布罩,至少需要用布多少平方米?



    (四)小结作业
    这节课我们一起学习了什么?你有哪些收获?
    利用本节课所学的知识解决生活中遇到的问题。
    【板书设计】
    长方体和正方体的表面积



    长方体或正方体6个面的总面积,叫做它的表面积。
    例1:
    例2:
    长方体表面积=(长×宽+长×高+宽×高)×2;正方体表面积=边长×边长×6
    【答辩题目解析】
    1.本节课的教学目标是什么?
    【参考答案】
    知识与技能:能够知道什么是长方体和正方体表面积,学会长方体和正方体表面积计算方法,并能够运用方法解决实际问题。
    过程与方法:通过动手实践、自主探索和合作交流的学习方式参与活动之中探索本质,锻炼分析、归纳、概括、推理能力。
    情感态度与价值观:经历过程体验成功,激发学习兴趣,树立自信,形成良好的学习习惯。
    2.如何做好课堂提问?
    【参考答案】
    课堂提问是启发学生非常重要的手段。要想做好,需要从以下几个方面入手:
    首先,深钻教材是有效提问的前提。教师只有钻研教材,把握知识的来龙去脉,教学目标才能明确,教学重难点才能清晰,提问才能更具有针对性。
    其次,教师需要了解学生情况。了解学生的生活经验,了解学生的知识背景,了解学生已有的知识与技能水平,这样才能依据学生情况提出更有针对性的问题,实现有效提问。
    然后,教师还要合理设计提问的问题。把握好问题的形式。
    最后,提问应该给予学生足够的思考与反应时间,才能达到最好的效果。

  • 第21题:

    连接正方体每个面的中心构成一个正八面体(如下图所示)。已知正方体的边长为6厘 米,问正八面体的体积为多少立方厘米?( )



    答案:C
    解析: