更多“设总体X~N(0,σ^2),X1,X2,…,X20是总体X的简单样本,求统计量U=所服从的分布.”相关问题
  • 第1题:

    设X1,X2,…,X7是总体X~N(0,4)的简单随机样本,求P


    答案:
    解析:
    由X1,X2…,X7与总体服从相同的分布且相互独立,得
    于是
    查表得,故

  • 第2题:

    设总体X的分布律为P(X=k)P(k=1,2,…),其中p是未知参数,X1,X2,…,Kn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.


    答案:
    解析:

  • 第3题:

    设总体X服从分布N(0,2^2),而X1,X2,…,X15是来自总体X的简单随机样本,则随机变量服从_______分布,参数为________.


    答案:1、F 2、(10,5)
    解析:
    本题是数三的考题,由于X~N(0,2^2),则 
    且相互独立,故

    答案应填服从F分布,参数为(10,5).

  • 第4题:

    设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.


    答案:
    解析:

  • 第5题:

    设总体X~U(θ,θ),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.


    答案:
    解析:

  • 第6题:

    设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi-(i=1,2,…,n).求:(1)D(Yi);(2)Cov(Yb,Yn).


    答案:
    解析:

  • 第7题:

    设总体X服从正态分布N(μ,σ^2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,Xn(n≥2),其样本均值,求统计量的数学期望E(Y).


    答案:
    解析:

  • 第8题:

    设X1,X2,…,X9是来自正态总体X的简单随机样本,证明统计量Z服从自由度为2的t分布.


    答案:
    解析:

  • 第9题:

    若总体X~N(0,32),X1,X2,…,x9为来自总体样本容量为9的简单随机样本,则服从_______分布,其自由度为_______.


    答案:
    解析:
    因为X~N(0,3)(i=1,2,…,9),所以且相互独立,故,自由度为9.

  • 第10题:

    设总体X的分布函数为

    其中θ是未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.
      (Ⅰ)求EX与EX^2;
      (Ⅱ)求θ的最大似然估计量.
      (Ⅲ)是否存在实数a,使得对任何ε>0,都有


    答案:
    解析:
    【分析】(Ⅰ)给出F(x;θ)就有f(x;θ),密度函数有了,就有

  • 第11题:

    设总体X的概率密度为
      
      其中μ是已知参数,σ>0是未知参数,A是常数.X1,X2,…,Xn是来自总体X的简单随机样本.
      (Ⅰ)求A;
      (Ⅱ)求σ的最大似然估计量.


    答案:
    解析:

  • 第12题:

    设(X1,X2,…,X)是抽自正态总体N(0,1)的一个容量为n的样本,记,则下列结论中正确的是()。

    • A、服从正态分布N(0,1)
    • B、n服从正态分布N(0,1)
    • C、服从自由度为n的x2分布
    • D、服从自由度为(n-1)的t分布

    正确答案:C

  • 第13题:

    设总体X的分布函数为
      
      其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:
      (Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量.


    答案:
    解析:

  • 第14题:

    设总体X~N(μ,25),X1,X2,…,X100为来自总体的简单随机样本,求样本均值与总体均值之差不超过1.5的概率


    答案:
    解析:
    总体均值为E(X)=μ,

    =Ф(3)-Ф(-3)=2Ф(3)-1=0.9973

  • 第15题:

    设总体X,Y相互独立且都服从N(μ,σ^2)分布,(X1,X2,…,Xn)与(Y1,Y1,…,yn)分别为来自总体X,Y的简单随机样本,证明:为参数σ^2的无偏估计量,


    答案:
    解析:

  • 第16题:

    设总体X,Y相互独立且服从N(0,9)分布,(X1,…,X9)与(Y1,…,Y9)分别为来自总体X,Y的简单随机样本,则U=~_______.


    答案:1、t(9)
    解析:

  • 第17题:

    设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量θ;(2)求D(θ).


    答案:
    解析:

  • 第18题:

    设总体X的概率密度为f(x)=,其中未知参数θ>0,设X1,X2,…,X是来自总体X的简单样本.(1)求θ的最大似然估计量;(2)该估计量是否是无偏估计量?说明理由.


    答案:
    解析:

  • 第19题:

    设总体X~N(μ,σ^2),X1,X2,…,xn为总体的简单样本,S^2为样本方差,则D(S^2)=_______.


    答案:
    解析:

  • 第20题:

    设总体X~N(0,2^2),X1,X2,…,X30为总体X的简单随机样本,求统计量U=所服从的分布及自由度.


    答案:
    解析:

  • 第21题:

    设总体X服从正态分布N(μ,σ^2)(σ>0),X1,X1,…,Xn为来自总体X的简单随机样本,令Y=.,求Y的数学期望与方差


    答案:
    解析:

  • 第22题:

    设总体X的概率密度为
      
    其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本.

    (Ⅰ)求参数λ的矩估计量;

    (Ⅱ)求参数λ的最大似然估计量.


    答案:
    解析:

  • 第23题:

    设总体X~N(0,σ2),X1,X2,...Xn是自总体的样本,则σ2的矩估计是:


    答案:D
    解析:
    提示 注意 E(x)=0,σ2=D(x)=E(x2) - [E(x)]2=E(x2),σ2也是x的二阶原点矩,σ2的矩估计量是样本的二阶原点矩。