参考答案和解析
答案:
解析:
更多“设A,B为n阶矩阵,且r(A)+r(B)”相关问题
  • 第1题:

    设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=O与ABX=O同解的充分条件是().

    A.r(A)=s
    B.r(A)=m
    C.r(B)=s
    D.r(B)=n

    答案:A
    解析:
    设r(A)=s,显然方程组BX=0的解一定为方程组ABX=0的解,反之,若ABX=0,因为r(A)=s,所以方程组AY=0只有零解,故BX=0,即方程组BX=0与方程组ABX=0同解,选(A).

  • 第2题:

    设A为四阶非零矩阵,且r(A^*)=1,则().

    A.r(A)=1
    B.r(A)=2
    C.r(A)=3
    D.r(A)=4

    答案:C
    解析:
    因为r(A^*)=1,所以r(A)=4-1=3,选(C).

  • 第3题:

    设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=_______.


    答案:1、2
    解析:
    因为|B|=10≠0,所以r(AB)=r(A)=2.

  • 第4题:

    设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,


    答案:
    解析:

  • 第5题:

    设A=图},B≠0为三阶矩阵,且BA=0,则r(B)=_______.{


    答案:1、1
    解析:
    BA=0r(A)+r(B)≤3,因为r(A)≥2,所以r(B)≤1,又因为B≠0,所以r(B)=1.

  • 第6题:

    设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,


    答案:
    解析:

  • 第7题:

    设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n,


    答案:
    解析:

  • 第8题:

    设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

    答案:
    解析:

  • 第9题:

    设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则



    A.Ar(A AB)=r(A)
    B.r(A BA)=r(A)
    C.r(A B)=max{r(A),r(B)}
    D.r(A B)=r(A^T B^T).

    答案:A
    解析:

  • 第10题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )

    A.r(A)=m,r(B)=m
    B.r(A)=m,r(B)=n
    C.r(A)=n,r(B)=m
    D.r(A)=n,r(B)=n

    答案:A
    解析:
    设A为m×n矩阵,B为n×s矩阵,因此r(A)≤m,r(B)≤m.由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m.

  • 第11题:

    单选题
    设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。
    A

    r>r1

    B

    r<r1

    C

    r=r1

    D

    r与r1的关系依C而定


    正确答案: A
    解析:
    由r1=r(B)≤min[r(A),r(C)]=r(A)=r。
    且A=BC1,故r=r(BC1)≤min[r(B),r(C1)]=r(B)=r1,所以有r=r1

  • 第12题:

    单选题
    设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。
    A

    r>r1

    B

    r<rl

    C

    r=rl

    D

    r与r1的关系依C而定


    正确答案: A
    解析:
    由r1=r(B)≤min[r(A),r(C)]=r(A)=r。
    且A=BC1,故r=r(BC1)≤min[r(B),r(C1)]=r(B)=r1,所以有r=r1

  • 第13题:

    设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( )


    A.r(A)=r(B)=m
    B.r(A)=m r(B)=n
    C.r(A)=n r(B)=m
    D.r(A)=r(B)=n

    答案:A
    解析:

  • 第14题:

    设A,B是n阶矩阵,且B≠0,满足AB=0,则以下选项中错误的是:
    A.r(A)+r(B)≤n B. A =0 或 B =0 C. 0≤r(A)


    答案:D
    解析:
    提示:根据矩阵乘积秩的性质,AB=0,有r(A)+r(B)≤n成立,选项A正确。AB=0,取矩阵的行列式, A B =0, A =0或 B =0,选项B正确。又因为B≠0,B为非零矩阵, r(B)≥1,由上式r(A) + r(B)≤n,推出0≤r(A)

  • 第15题:

    设A=,B为三阶非零矩阵,且AB=O,则r(A)=_______.


    答案:1、2
    解析:
    因为AB=0,所以r(A)+r(B)≤3,又因为B≠0,所以r(B)≥1,从而有r(A)≤2,显然A有两行不成比例,故r(A)≥2,于是r(A)=2.

  • 第16题:

    设A是m×s阶矩阵,.B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.


    答案:
    解析:

  • 第17题:

    A,B为n阶矩阵且r(A)+r(B)

    答案:
    解析:

  • 第18题:

    设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_______.


    答案:
    解析:

  • 第19题:

    设A为m×n阶实矩阵,且r(A)=n.证明:A^TA的特征值全大于零.


    答案:
    解析:

  • 第20题:

    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则



    A.A秩r(A)=m,秩r(B)=m
    B.秩r(A)=m,秩r(B)=n
    C.秩r(A)=n,秩r(B)=m
    D.秩r(A)=n,秩r(B)=n

    答案:A
    解析:
    本题考的是矩阵秩的概念和公式.因为AB=E是m阶单位矩阵,知r(AB)=m.又因r(AB)≤min(r(A),r(B)),故m≤r(A),m≤r(B). ①另一方面,A是m×n矩阵,B是n×m矩阵,又有r(A)≤m,r(B)≤m. ②比较①、②得r(A)=m,r(B)=m.所以选(A)

  • 第21题:

    设A,B是n阶矩阵,且B≠0,满足AB=0,则以下选项中错误的是:
    A.r(A)+r(B)≤n B.

    A =0 或
    B =0
    C. 0≤r(
    D)

    答案:D
    解析:
    提示 根据矩阵乘积秩的性质,AB=0,有r(A)+r(B)≤n成立,选项A正确。AB=0,取矩阵的行列式, A B =0, A =0或 B =0,选项B正确。又因为B≠0,B为非零矩阵, r(B)≥1,由上式r(A) + r(B)≤n,推出0≤r(A)

  • 第22题:

    单选题
    设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。
    A

    r(A)=m,r(B)=m

    B

    r(A)=m,r(B)=n

    C

    r(A)=n,r(B)=m

    D

    r(A)=n,r(B)=n


    正确答案: C
    解析:
    设A为m×n矩阵,B为n×m矩阵,因此r(A)≤m,r(B)≤m。
    由AB=E有r(AB)=r(E)=m,由r(AB)≤min{r(A),r(B)},知r(A)≥m,r(B)≥m,因此r(A)=m,r(B)=m。

  • 第23题:

    填空题
    设A为4阶方阵,且r(A)=3,A*为A的伴随矩阵,则r(A*)=____。

    正确答案: 1
    解析:
    由A是4阶方阵且r(A)=3,知|A|=0,又AA*=|A|E=0为A的齐次方程组,则A*的列向量是齐次方程组Ax()0()的解,故r(A)+r(A*)≤4,则r(A*)≤1。由r(A)=3知,A至少有一个代数余子式不为0,故A*≠0,所以r(A*)=1。