更多“设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y”相关问题
  • 第1题:

    设随机变量X和Y都服从正态分布,则().

    A.X+Y一定服从正态分布
    B.(X,Y)一定服从二维正态分布
    C.X与Y不相关,则X,Y相互独立
    D.若X与Y相互独立,则X-Y服从正态分布

    答案:D
    解析:
    若X,Y独立且都服从正态分布,则X,Y的任意线性组合也服从正态分布,选(D).

  • 第2题:

    设(X,Y)服从二维正态分布,其边缘分布为X~N(1,1),Y~N(2,4),X,Y的相关系数为=-0.5,且P(aX+bY≤1)=0.5,则( ).


    答案:D
    解析:
    因为(X,Y)服从二维正态分布,所以aX+bY服从正态分布,E(aX+bY)=a+2b,D(aX+bY)=a^2+4b^2+2abCov(X,Y)=a^2+4b^2-2ab,即aX+bY~N(a+2b,a^2+4b^2-2ab),由P(aX+bY≤1)=0.5得a+2b=1,所以选(D).

  • 第3题:

    设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则



    答案:B
    解析:
    【简解】首先应看到,X+Y和X-Y均为一维正态分布的随机变量.其次要看到,如果z~N(μ,σ^2),则,反之,如果,则必有a=μ.因为正态分布的概率密度有对称性.有考生在求解过程中将X+Y和X-Y都进行标准化,更有考生把X+Y和X-Y都看成二维正态随机变量的函数来求解,就更复杂化了.

  • 第4题:

    设随机变量X服从正态分布N(μ,16),Y服从正态分布N(μ,25).记p=P(X≤μ-4),q=P(Y≥μ+5),则p与q的大小关系是( ).

    A.p>q
    B.p<q
    C.p=q
    D.不能确定

    答案:C
    解析:

  • 第5题:

    设二维随机变量(X,Y)服从二维正态分布,且X~N(1,3^2),Y~N(0,4^2),且X,Y的相
      关系数为-,又设Z=
    (1)求E(Z),D(Z);(2)求;(3)X,Z是否相互独立?为什么?


    答案:
    解析:
    【解】(1)

    (2)
    (3)因为(X,Y)服从二维正态分布,所以Z服从正态分布,同时X也服从正态分布,又X,
    Z不相关,所以X,Z相互独立.

  • 第6题:

    设随机变量X,Y相互独立且都服从二项分布B(n,p),则P{min(X,Y)=0}=_______.


    答案:
    解析:
    令A=(X=0),B=(Y=0),则P{min(X,Y)=0)=P(A+B)=P(A)+P(B)-P(AB)

  • 第7题:

    设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为

    A.A0
    B.1
    C.2
    D.3

    答案:D
    解析:

  • 第8题:

    设(X,Y)服从二维正态分布,则cov(X,Y)=0是X与Y相互独立的()条件。


    正确答案:充要

  • 第9题:

    设二维随机变量(X,Y)在区域D上服从均匀分布,其中D://0≤x≤2,0≤y≤2。记(X,Y)的概率密度为f(x,y),则f(1,1)=()


    正确答案:0.25

  • 第10题:

    设随机变量X和Y相互独立,且X~N(0,1),Y~N(1,1),则()

    • A、P{X+Y≤0}=0.5
    • B、P{X+Y≤1}=0.5
    • C、P{X-Y≤0}=0.5
    • D、P{X-Y≤1}=0.5

    正确答案:B

  • 第11题:

    设随机变量X服从正态分布N(μ,16),Y服从正态分布N(μ,25).记p=P(X≤μ-4),g=P(Y≥μ+5),则p与q的大小关系是().

    • A、p>q
    • B、p
    • C、p=q
    • D、不能确定

    正确答案:C

  • 第12题:

    单选题
    设随机变量X服从正态分布N(μ,16),Y服从正态分布N(μ,25).记p=P(X≤μ-4),g=P(Y≥μ+5),则p与q的大小关系是().
    A

    p>q

    B

    p

    C

    p=q

    D

    不能确定


    正确答案: B
    解析: 暂无解析

  • 第13题:

    设二维随机变量(X,Y)服从二维正态分布,则随机变量ζ=X+Y与η=X-Y不相关的充分必要条件为


    答案:B
    解析:

  • 第14题:

    设随机变量X服从正态分布N(0,1),对给定的α(0<α<1)数μ满足P{X>μα}=α,若P{|X|


    答案:C
    解析:

  • 第15题:

    设随机变量X,Y相互独立,且X~N(0,1),Y~N(1,1),则().


    答案:B
    解析:
    X,Y独立,X~N(0,1),Y~N(1,1),X+Y~N(1,2)P(X+Y≤1)=,所以选(B).

  • 第16题:

    设随机变量X服从正态分布N(0,1),P(x>1)=0.2,则P(-1
    A.0.1
    B.0.3
    C.0.6
    D.0.8

    答案:C
    解析:
    P(-11)=0.6。

  • 第17题:

    设随机变量X服从正态分布N(μ,σ^2),(σ>0)且二次方程y^2+4y+X=0无实根的概率为,则μ=________.


    答案:1、4
    解析:
    二次方程无实根,即y^2+4y+X=0的判别式16-4X<0.其概率为,即P{X>4}=,所以μ=4,答案应填4.

  • 第18题:

    设二维随机变量(X,Y)服从正态分布N(μ,μ;σ^2,σ^2;0),则E(XY^2)=________.


    答案:
    解析:

  • 第19题:

    设随机变量X服从正态分布N(1,2),Y服从泊松分布P(2)。求期望E=(2X—y+3)。


    答案:
    解析:
    解:本题考查一些重要分布的数字特征与参数之间的关系。E(X)=1,E(y)=2 E(2X-y+3)=2E(X)-E(y)+3=3。

  • 第20题:

    设随机变量X服从正态分布N(μ1,σ21),随机变量Y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有()

    • A、σ1<σ2
    • B、σ1>σ2
    • C、μ1<μ2
    • D、μ1>μ2

    正确答案:A

  • 第21题:

    设随机变量X与Y相互独立,且X~N(2,22),Y~N(-1,1),则P{|2X+3Y-1|≤9.8}=()。


    正确答案:0.95

  • 第22题:

    设随机变量X服从正态分布N(-1,9),则随机变量Y=2-X服从().

    • A、正态分布N(3,9)
    • B、均匀分布
    • C、正态分布N(1,9)
    • D、指数分布

    正确答案:A

  • 第23题:

    单选题
    设随机变量X服从正态分布N(μ1,σ12),Y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有(  )。
    A

    σ1<σ2

    B

    σ1>σ2

    C

    μ1<μ2

    D

    μ1>μ2


    正确答案: A
    解析:
    根据题意,有:P{|(X-μ1)/σ1|<1/σ1}>P{|(Y-μ2)/σ2|<1/σ2},故1/σ1>1/σ2⇒σ1<σ2