更多“22、若一函数在某一点处的偏导数存在,该函数在该点处连续。”相关问题
  • 第1题:

    函数f(x,y)在点P0(x0,y0)处有一阶偏导数是函数在该点连续的(  )。

    A、必要条件
    B、充分条件
    C、充分必要条件
    D、既非充分又非必要条件

    答案:D
    解析:

  • 第2题:

    函数z=f(x,y)在点(x,y)处的偏导数存在是函数在该点可微的()

    A.必要条件
    B.充分条件
    C.既非必要又非充分条件
    D.充要条件

    答案:A
    解析:
    因为对于二元函数而言,在某点的偏导数存在,未必推出在该点可微,但是二元函数在某点可微,则在该点的偏导数一定存在,故应选A答案.

  • 第3题:

    设函数f(x)具有2阶连续导数,若曲线y=f(x)过点(0,0)且与曲线y=^x在点(1,2)处相切,则=________.


    答案:1、2(ln2-1)
    解析:

  • 第4题:

    若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()

    • A、连续
    • B、偏导数存在
    • C、偏导数连续
    • D、切平面存在

    正确答案:C

  • 第5题:

    多元函数在某点处的偏导数刻划了函数在这点的变化率。


    正确答案:错误

  • 第6题:

    函数在某一点处的导数的几何意义是:函数曲线在这点处的切线。


    正确答案:错误

  • 第7题:

    函数在一点处的导数就是这点处的微分。


    正确答案:错误

  • 第8题:

    判断题
    函数在一点处的导数就是这点处的微分。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第9题:

    单选题
    对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?
    A

    必要条件而非充分条件

    B

    充分条件而非必要条件

    C

    充分必要条件

    D

    既非充分又非必要条件


    正确答案: B
    解析: 暂无解析

  • 第10题:

    单选题
    二元函数z=f(x,y)在点(x0,y0)处存在一阶连续偏导数是它在此点处可微的(  )。
    A

    充分条件

    B

    必要条件

    C

    充要条件

    D

    以上都不是


    正确答案: C
    解析:
    一阶偏导数在(x0,y0)点连续,则函数在(x0,y0)处可微;而函数在(x0,y0)处可微,其一阶偏导数不一定连续。

  • 第11题:

    单选题
    若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()
    A

    连续

    B

    偏导数存在

    C

    偏导数连续

    D

    切平面存在


    正确答案: C
    解析: 由可微一定连续,可微一定存在偏导数知(A)、(B)正确,由偏导数存在知切平面存在,(D)正确。但可微不一定偏导数连续,(C)不正确

  • 第12题:

    判断题
    多元函数在某点处的偏导数刻划了函数在这点的变化率。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第13题:

    设有三元方程 ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程

    A.只能确定一个具有连续偏导数的隐函数z=z(x,y)
    B.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)
    C.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)
    D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

    答案:D
    解析:

  • 第14题:

    下列命题正确的是()

    A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
    B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
    C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
    D.若函数f(x)在点x0处连续,则f'(x0)一定存在

    答案:C
    解析:
    根据函数在点x0处取极值的必要条件的定理,可知选项C是正确的.

  • 第15题:


    A.两个偏导数存在,函数不连续
    B.两个偏导数不存在,函数连续
    C.两个偏导数存在,函数也连续,但函数不可微
    D.可微

    答案:C
    解析:

  • 第16题:

    对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?

    • A、必要条件而非充分条件
    • B、充分条件而非必要条件
    • C、充分必要条件
    • D、既非充分又非必要条件

    正确答案:D

  • 第17题:

    函数在某一点处的导数是一种无穷小比无穷小的极限。


    正确答案:正确

  • 第18题:

    若某点是二元函数的驻点,则函数在这点处的()。

    • A、各个偏导数大于0
    • B、各个偏导数小于0
    • C、各个偏导数等于0
    • D、各二阶偏导数等于0

    正确答案:C

  • 第19题:

    下列结论正确的是().

    • A、x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件
    • B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件
    • C、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件
    • D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

    正确答案:D

  • 第20题:

    单选题
    若某点是二元函数的驻点,则函数在这点处的()。
    A

    各个偏导数大于0

    B

    各个偏导数小于0

    C

    各个偏导数等于0

    D

    各二阶偏导数等于0


    正确答案: D
    解析: 暂无解析

  • 第21题:

    单选题
    考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。
    A

    ②⇒③⇒①

    B

    ③⇒②⇒①

    C

    ③⇒④⇒①

    D

    ③⇒①⇒④


    正确答案: C
    解析:
    根据二元函数连续、可微及可导的关系可知②⇒③⇒①、②⇒③⇒④。

  • 第22题:

    判断题
    函数在某一点处的导数的几何意义是:函数曲线在这点处的切线。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第23题:

    单选题
    设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(  )。
    A

    只能确定一个具有连续偏导数的隐函数z=z(x,y)

    B

    可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)

    C

    可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)

    D

    可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)


    正确答案: C
    解析:
    构造函数F(x,y,z)=xy-zlny+exz-1,则Fx′=y+zexz,Fy′=x-(z/y),Fz′=-lny+xexz。Fx′(0,1,1)=2≠0,Fy′(0,1,1)=-1≠0,Fz′(0,1,1)=0。
    故根据隐函数的存在定理可知,方程xy-zlny+exz=1能确定x是y、z的具有连续偏导数的函数x=x(y,z);y是x、z的具有连续偏导数的函数y=y(x,z)。因为Fz′(0,1,1)=0不能满足定理成立的条件,故不能确定z是x、y的具有连续偏导数的隐函数z=z(x,y)。

  • 第24题:

    单选题
    函数 在点 处的一阶偏导数存在是该函数在此点可微分的()。
    A

    必要条件

    B

    充分条件

    C

    充分必要条件

    D

    既非充分条件也非必要条件


    正确答案: D
    解析: