更多“设随机变量X服从标准正态分布,则其密度函数φ0(x)=”相关问题
  • 第1题:

    设随机变量X服从正态分布N(0,1),P(x>1)=0.2,则P(-1
    A.0.1
    B.0.3
    C.0.6
    D.0.8

    答案:C
    解析:
    P(-11)=0.6。

  • 第2题:

    设随机变量X~N(0,1),且y=9X^2,则y的密度函数为_______.


    答案:
    解析:

  • 第3题:

    设随机变量X~U(0,1),在X=x(0  (1)求X,y的联合密度函数;
      (2)求y的边缘密度函数.


    答案:
    解析:

  • 第4题:

    设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=_________.


    答案:
    解析:
    (X,Y)~N(1,0;1,1;0),所以X与Y相互独立,且X~N(1,1),Y~N(0,1)也就有(X-1)~N(0,1)与Y相互独立,再根据对称性:P{X-1<0}=P{X-1>0}=P(Y<0)=P{Y>0}=.不难求出P{XY-Y<0}的值.

  • 第5题:

    设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为

    A.A0
    B.1
    C.2
    D.3

    答案:D
    解析:

  • 第6题:

    设随机变量X的分布函数为

    则X的概率密度函数f(x)为( )。



    答案:B
    解析:
    由分布函数与概率密度函数关系f(x)=F'(x),当1≤x<e时,f(x)=,X的概率密度综合表示为

  • 第7题:

    设随机变量(X,Y)服从二维正态分布,其概率密度为f(x,y)=1/2π


    答案:A
    解析:
    提示 (X,Y)~N(0,0,1,1,0),X~N(0,1),Y~N(0,1),E(X2+Y2) =E(X2)+E(Y2),E(X2)=D(X) + (E(X) )2

  • 第8题:

    设随机变量X和Y都服从正态分布,则().

    A.X+Y一定服从正态分布
    B.(X,Y)一定服从二维正态分布
    C.X与Y不相关,则X,Y相互独立
    D.若X与Y相互独立,则X-Y服从正态分布

    答案:D
    解析:
    若X,Y独立且都服从正态分布,则X,Y的任意线性组合也服从正态分布,选(D).

  • 第9题:

    设随机变量X和Y都服从标准正态分布,则




    A.X+Y服从正态分布.
    B.X^2+Y^2服从χ^2分布.
    C.X^2和Y^2都服从χ^2分布.
    D.X^2/Y^2服从F分布,

    答案:C
    解析:
    (方法一)X和Y均服从N(0,1).故X^2和Y^2都服从χ^2(1)分布.答案应选(C).(方法二)(A)不成立,因题中条件既没有X与Y相互独立,也没有假定(X,Y)正态,故就保证不了X+Y正态.(B)和(D)均不成立,因为没有X与Y的相互独立,所以也没有X^2与Y^2相互独立,答案应选(C).【评注】我们可以小结正态分布一维和二维间的关系如下:(1)当(X,Y)正态时,X与Y均正态,且任何aX+bY也正态,反之,X与Y均正态,不能保证(X,Y)二维正态,也不能保证aX+bY正态.如果对任何aX+bY均正态,则(X,Y)二维正态.(2)当X与Y均正态且相互独立是指(X,Y)二维正态,且相关系数ρXY=0

  • 第10题:

    设随机变量U服从标准正态分布,其分布函数为Φ(u),α为正数,则下列叙述中正确的有( )。



    答案:B,C,E
    解析:

  • 第11题:

    设服从N(0,1)分布的随机变量X,其分布函数为φ(x)。如果φ(1)=0.84,则P{|x|≤1}的值是()。

    • A、0.25
    • B、0.68
    • C、0.13
    • D、0.20

    正确答案:B

  • 第12题:

    设随机变量X服从正态分布U(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=()


    正确答案:4

  • 第13题:

    设随机变量X服从正态分布N(μ,σ^2),(σ>0)且二次方程y^2+4y+X=0无实根的概率为,则μ=________.


    答案:1、4
    解析:
    二次方程无实根,即y^2+4y+X=0的判别式16-4X<0.其概率为,即P{X>4}=,所以μ=4,答案应填4.

  • 第14题:

    设随机变量X的密度函数为f(x)=则P{|X—E(X)|<2D(X)}=_______.


    答案:
    解析:

  • 第15题:

    设二维随机变量(X,Y)服从正态分布N(μ,μ;σ^2,σ^2;0),则E(XY^2)=________.


    答案:
    解析:

  • 第16题:

    设随机变量X的分布函数为,其中为标准正态分布的分布函数,则E(X)=

    A.A0
    B.0.3
    C.0.7
    D.1

    答案:C
    解析:

  • 第17题:

    设随机变量X的分布函数为,其中为标准正态分布函数,则EX=________.


    答案:1、2.
    解析:

  • 第18题:

    设服从N(0,1)分布的随机变量X,其分布函数为φ(x),如果φ(1)=0.84,则P|x|≤1的值是( )。



    答案:B
    解析:
    X~N(0,1),P{|x|≤1)=2Φ(1)-1=0.68

  • 第19题:

    设随机变量X服从正态分布N(0,1),对给定的α(0<α<1)数μ满足P{X>μα}=α,若P{|X|


    答案:C
    解析:

  • 第20题:

    设X1,X2,…,Xn,…为独立同分布的随机变量列,且均服从参数为λ(λ>1)的指数分布,记φ(x)为标准正态分布函数,则



    答案:C
    解析:
    【简解】本题是数四的考题.X1,X2,…,Xn,…独立同分布、方差存在.根据中心极限定理  

  • 第21题:

    设服从N(0,1)分布的随机变量X,其分布函数为Φ(x)。如果Φ(1) = 0.84,则P{ X ≤1}的值是:

    A. 0. 25
    B. 0. 68
    C. 0. 13
    D. 0. 20

    答案:B
    解析:
    提示:X~N(0,1) ,P{-a≤X≤a}=2Φ(a)-1。

  • 第22题:

    设X服从标准正态分布,且0


    答案:A,B,C
    解析:

  • 第23题:

    对于随机变量X服从正态分布,即X~N(0,4),则X的标准差是()。

    • A、0
    • B、4
    • C、2
    • D、16

    正确答案:C