箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球15个红球。如果经过若干次以后,箱子里只剩下3个白球,53个红球,那么,箱子里原有红球比白球多多少个?( )A.102 B.104 C.106 D.108

题目
箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球15个红球。如果经过若干次以后,箱子里只剩下3个白球,53个红球,那么,箱子里原有红球比白球多多少个?( )

A.102
B.104
C.106
D.108

相似考题
参考答案和解析
答案:C
解析:
设共取了x次,原有红球(53+15x)个,原有白球(3+7x)个,由题意可得,53+15x=3(3+7x)+2,解得x=7,原有红球比白球多(53+15x)-(3+7x)=106个,
更多“箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球15个红球。如果经过若干次以后,箱子里只剩下3个白球,53个红球,那么,箱子里原有红球比白球多多少个?( )”相关问题
  • 第1题:

    口袋里有3个红球和2个白球,球除颜色外完全相同,从中任意摸出1个球。那么,摸出红球的可能性是_____,摸出白球的可能性是_____。要使它们的可能性相同,可以怎么做?


    3/5;2/5;拿走一个红球

  • 第2题:

    从装有2个红球和2个白球的袋内任取2球,那么互不相容的两个事件是________。

    A.“至少一个白球”与“都是白球”

    B.“至少一个白球”与“至少一个红球”

    C.“恰有一个白球”与“恰有两个白球”

    D.“至多一个白球”与“都是红球”


    正确答案:C
    解析:设“取到红球为1”,“取到白球为0”,则样本空间共有四个样本点,Ω={(0,0),(0,1),(1,0),(1,1)};“至少一个白球”={(0,0),(0,1),(1,0)};“都是白球”={(0,0)};“至多一个白球”=“至少一个红球”={(1,1),(0,1),(1,0)};“都是红球”={(1,1)};“恰有一个白球”={(0,1),(1,0)};“恰有两个白球”={(0,0)),所以答案A、B是相容事件,D是对立事件.C才是互不相容的事件。

  • 第3题:

    一个袋子里面红球和白球的比例为2:5,又往袋子里面加入2个红球,结果比例变为1:2,那么袋子里原有多少个红球?( )

    A.10

    B.20

    C.28

    D.8


    正确答案:D
    假设原来袋子中红球和白球的总数为2,则红球数原为2/7χ,加入2个红球后,红球数为(2/7χ+2),总球敬为(χ+2),可列一方程式:2/7χ+2=(χ+2)/3,可以解知χ=28,则红球即为28×2/7=8个。

  • 第4题:

    箱子里有红、白两种玻璃球,红球是白球的3倍少2个。每次从箱子里取出7个白球、13个红球,经过若干次后,箱子里剩下6个白球,72个红球,那么,原来箱予里红球比白球多多少个?( )

    A.102

    B.104

    C.106

    D.108


    正确答案:D
    D[解析]假设箱子里原来有白球x个,那么红球为(3x-2)个,依题意有(x-6)÷7=(3x-2-72)÷13,解得x=55,所以原来红球比白球多3×55-2-55=108(个)。故选D。

  • 第5题:

    袋子里有6个红球和4个白球,随机取出3个球,问取出的球中红球不超过一个的概率最接近以下哪个?

    A.0.1
    B.0.2
    C.0.3
    D.0.4

    答案:C
    解析:
    第一步,本题考查概率问题,属于分类分步型。

  • 第6题:

    现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球,(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.


    答案:
    解析:

  • 第7题:

    从一个装有三个红球两个白球的盒子里摸球,那么连续两次摸中红球的概率为()

    A. 0.1
    B. 0.16
    C. 0.3
    D. 0.45

    答案:C
    解析:
    分步概率。“三个红球两个白球”,那么摸中红球的概率为0.6,第一次摸中红球以后,袋子里还有两个红球两个白球,此时摸中红球的概率为0.5,分步概率做乘法,那么连续两次摸中红球的概率0.3。选择C。

  • 第8题:

    口袋里装有10只外形相同的球,其中7只红球,3只白球.从口袋中任意取出2只球,则它们是一只红球、一只白球的概率等于().

    • A、21/90.
    • B、21/45
    • C、21/100
    • D、21/50

    正确答案:B

  • 第9题:

    单选题
    现有A、B两个容器,容器A中有7个红球3个白球,容器B中有1个红球9个白球,现已知从这两个容器里任意取出一球,且是红球,则该红球来自容器A的概率是:
    A

    35%

    B

    50%

    C

    72.5%

    D

    87.5%


    正确答案: C
    解析:

  • 第10题:

    问答题
    8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球、第二次取到红球的概率;    (2)两次取得一红球一白球的概率.

    正确答案:
    解析: 暂无解析

  • 第11题:

    单选题
    袋子里红、黄、蓝、白四种颜色的球分别有3、4、5、6只,每次只能取出一只球,取出的球不再放回袋子,则至少要取多少次才能保证取出两只红球?()
    A

    12

    B

    15

    C

    16

    D

    17


    正确答案: C
    解析: 考虑最差情况,先取出白、蓝、黄三种颜色的球,最后取出两个红色的球,要取6+5+4+2=17次。

  • 第12题:

    单选题
    现有3个箱子,依次放入1、2、3个球,然后将3个箱子随机编号为甲、乙、丙,接着在甲、乙、丙3个箱子里分别放入其箱内球数的2、3、4倍,共放了22个球。最终甲箱中的球比乙箱()。
    A

    多1个

    B

    少1个

    C

    多2个

    D

    少2个


    正确答案: A
    解析: 由题知,甲、乙、丙3个箱子里最终的球数为原球数的3、4、5倍,而原来的球数是1或2或3,设三个箱子原来分别有x、y、z个球,则有x+y+x=6……(1),3x+4y+5x=22……(2),因为比较的是甲和乙的关系,因此我们将z消去,用5×(1)-(2)得2x+y=8.如果x=1,y=6,不符合,如果x=2,y=4,不符合,于是x=3,y=2,选A。

  • 第13题:

    袋子里红球与白球的数量之比为19:13,放入若干个红球后,红球与自球的数量之比变为5:3,再放入若干个白球后,红球与白球的数量之比为13:11,已知放入的红球比白球少80个。那么原来袋子里共有多少个球?

    A.650

    B.720

    C.840

    D.960


    正确答案:D


  • 第14题:

    袋子里红球与白球的数量之比为19:13,放入若干个红球后,红球与白球的数量之比变为5:3,再放入若干个白球后,红球与白球的数量之比为13:11,已知放入的红球比白球少80个。那么原来袋子里共有多少个球? A.650 B.720 C.840 D.960


    正确答案:D


    另法:由原红球:白球=19:13可知总球数一定能被19+13整除,只有D满足题意。

  • 第15题:

    箱子里有红、白两种玻璃球。红球是向球的3倍少2个。每次从箱子里取出7个白球、13个红球,经过若干次后,箱子里剩下6个白球,72个红球,那么,原来箱子里红球比白球多多少个?( )

    A.102

    B.104

    C.106

    D.108


    正确答案:D
    假设箱子里原来有白球x个,那么红球为(3x--2)个,依题意有(x-6)÷7=(3x-2-72)÷13,解得x=55,所以原来红球比白球多3×55-2-55=108(个)。故选D。

  • 第16题:

    现有 A、B 两个容器,容器 A 中有 7 个红球 3 个白球,容器 B 中有 1 个红球 9 个白球,现已 知从这两个容器里任意取出一球,且是红球,则该红球来自容器 A 的概率是:

    A.35%
    B.50%
    C.72.5%
    D.87.5%

    答案:D
    解析:
    两个容器共有8个红球,任取一个球是红球有8种情况,其中有7种情况来自容器A,则红球来自容器A的概率是7÷8=87.5%。

  • 第17题:

    箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球、15个红球。如果经过若干次以后,箱子里只剩下3个白球、53个红球,那么,箱子里原有红球比白球多多少个?

    A.102
    B.104
    C.106
    D.108

    答案:C
    解析:
    设共取了x次,原有红球(53+15x)个,原有白球(3+7x)个,由题意可得,53+15x=3(3+7x)+2,解得x=-7.原有红球比白球多(53+15x)一(3+7x)=106个,应选择C。

  • 第18题:

    一个袋子里面有10个球,包括红球、白球和黑球。已知从袋中任意摸一个球,得到黑球 的概率是2/5,从袋中任意摸两个球,至少有一个是白球的概率是7/9,问袋子里有多少个红球?

    a.l b.2 c.3 d.4


    答案:A
    解析:

  • 第19题:

    已知一个口袋里有5个红球,6个白球,7个黑球,则至少取出多少个球才能保证有一个红球和一个白球?()

    • A、3个
    • B、9个
    • C、13个
    • D、14个

    正确答案:D

  • 第20题:

    现有3个箱子,依次放入1、2、3个球,然后将3个箱子随机编号为甲、乙、丙,接着在甲、乙、丙3个箱子里分别放入其箱内球数的2、3、4倍,共放了22个球。最终甲箱中的球比乙箱()。

    • A、多1个
    • B、少1个
    • C、多2个
    • D、少2个

    正确答案:A

  • 第21题:

    单选题
    从一个装有三个红球两个白球的盒子里摸球,那么连续两次摸中红球的概率为(  )。
    A

    0.1

    B

    0.16

    C

    0.3

    D

    0.45


    正确答案: C
    解析:

  • 第22题:

    单选题
    在一个口袋里有黑球、白球、红球、蓝球各13个,则至少取出几个球才能保证有6个相同颜色的球()
    A

    24

    B

    23

    C

    22

    D

    21


    正确答案: D
    解析: 根据最差原则,先取出黑球、白球、红球、蓝球各5个,最后任意取出1个球,都能保证有6个颜色相同的球。5×4+1=21。

  • 第23题:

    单选题
    已知一个口袋里有5个红球,6个白球,7个黑球,则至少取出多少个球才能保证有一个红球和一个白球?()
    A

    3个

    B

    9个

    C

    13个

    D

    14个


    正确答案: D
    解析: 暂无解析

  • 第24题:

    单选题
    口袋里装有10只外形相同的球,其中7只红球,3只白球.从口袋中任意取出2只球,则它们是一只红球、一只白球的概率等于().
    A

    21/90.

    B

    21/45

    C

    21/100

    D

    21/50


    正确答案: C
    解析: 暂无解析