设f(x)是(-a,a)是连续的偶函数,且当0<x<a时,f(x)<f(0),则有结论( )。A.f(0)是f(x)在(-a,a)的极大值,但不是最大值 B.f(0)是f(x)在(-a,a)的最小值 C.f(0)是f(x)在(-a,a)的极大值,也是最大值 D.f(0)是曲线y=f(x)的拐点的纵坐标

题目
设f(x)是(-a,a)是连续的偶函数,且当0<x<a时,f(x)<f(0),则有结论( )。

A.f(0)是f(x)在(-a,a)的极大值,但不是最大值
B.f(0)是f(x)在(-a,a)的最小值
C.f(0)是f(x)在(-a,a)的极大值,也是最大值
D.f(0)是曲线y=f(x)的拐点的纵坐标

相似考题
更多“设f(x)是(-a,a)是连续的偶函数,且当0<x<a时,f(x)<f(0),则有结论( )。”相关问题
  • 第1题:

    设函数f(x)在x=a的某个邻域内连续,且f(a)为极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )


    答案:C
    解析:

  • 第2题:

    设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )

    A.f(a)=0且f′(a)=0
    B.f(a)=0且f′(a)≠0
    C.f(a)>0且f′(a)>
    D.f(a)<0且f′(a)<

    答案:B
    解析:

  • 第3题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:
    A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0
    C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0


    答案:B
    解析:
    提示:已知f(x)在(-∞,+∞)上是偶函数,函数图像关于y轴对称,已知函数在(0,+∞),f'(x)>0, f''(x)>0,表明在(0,+∞)上函数图像为单增且凹向,由对称性可知,f(x)在(-∞,0)单减且凹向,所以f'(x)<0, f''(x)>0。

  • 第4题:

    设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。


    答案:
    解析:

  • 第5题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。
    A. f'(x)>0,f''(x)>0 B. f(x) 0
    C. f'(x)>0,f''(x)


    答案:B
    解析:
    提示:f(x)在(-∞,+∞)上是偶函数,f'(x)在(-∞,+∞)在上是奇函数,f''(x)在(-∞,+∞)在上是偶函数,故应选B。

  • 第6题:

    设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。


    正确答案:正确

  • 第7题:

    设f(x)在(-a,a)是连续的偶函数,且当0()

    • A、f(0)是f(x)在(-a,A.的极大值,但不是最大值
    • B、B.f(0)是f(x)在(-a,的最小值
    • C、C.f(0)足f(x)在(-a,的极大值,也是最大值
    • D、f(0)是曲线y=f(x)的拐点的纵坐标

    正确答案:C

  • 第8题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f"(x)>0,则在(-∞,0)内必有()。

    • A、f'(x)>0,f"(x)>0
    • B、f'(x)<0,f"(x)>0
    • C、f'(x)>O,f"(x)<0
    • D、f'(x)<0,f"(x)<0

    正确答案:B

  • 第9题:

    单选题
    (2008)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f′(x)>0,f″(x)>0则在(-∞,0)内必有:()
    A

    f′(x)>0,f″(x)>0

    B

    f′(x)<0,f″(x)>0

    C

    f′(x)>0,f″(x)<0

    D

    f′(x)<0,f″(x)<0


    正确答案: C
    解析: 暂无解析

  • 第10题:

    单选题
    设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数f(x)是(  )。
    A

    奇函数

    B

    偶函数

    C

    周期函数

    D

    单调函数


    正确答案: C
    解析:
    对该函数由f(x+2k)=1/f(x+k)=f(x),故f(x)是周期函数。

  • 第11题:

    单选题
    设f′(x0)=f″(x0)=0,f‴(x0)>0,且f(x)在x0点的某邻域内有三阶连续导数,则下列选项正确的是(  )。
    A

    f′(x0)是f′(x)的极大值

    B

    f(x0)是f(x)的极大值

    C

    f(x0)是f(x)的极小值

    D

    (x0,f(x0))是曲线y=f(x)的拐点


    正确答案: D
    解析:
    已知f‴(x0)>0,则f″(x)在x0点的某邻域内单调增加,又由f″(x0)=0,则在x0点的某邻域内f″(x0)与f″(x0)符号相反,故(x0,f(x0))是曲线y=f(x)的拐点。

  • 第12题:

    单选题
    设f(x)在(-a,a)是连续的偶函数,且当0()
    A

    f(0)是f(x)在(-a,A.的极大值,但不是最大值

    B

    B.f(0)是f(x)在(-a,的最小值

    C

    C.f(0)足f(x)在(-a,的极大值,也是最大值

    D

    f(0)是曲线y=f(x)的拐点的纵坐标


    正确答案: B
    解析: 暂无解析

  • 第13题:

    设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。

    A.(x-a)[f(x)-f(a)]≥0
    B.(x-a)[f(x)-f(a)]≤0
    C.
    D.

    答案:C
    解析:

  • 第14题:

    设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,
    则在(- ∞ ,0)内必有:
    (A) f ' > 0, f '' > 0 (B) f ' 0
    (C) f ' > 0, f ''


    答案:B
    解析:
    解:选 B。
    偶函数的导数是奇函数,奇函数的导数是偶函数。
    f (x)是偶函数,则 f '(x)是奇函数,当x > 0时, f '(x) > 0,则x f '(x)是奇函数,则 f ''(x)是奇函数,当x > 0时, f '(x) > 0,则x 0;
    点评:偶函数的导数是奇函数,奇函数的导数是偶函数。

  • 第15题:

    设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上



    A.A当f'(x)≥0时,f(x)≥g(x)
    B.当f'(x)≥0时,f(x)≤g(x)
    C.当f"(x)≥0时,f(x)≥g(x)
    D.当f"(x)≥0时,f(x)≤g(x)

    答案:D
    解析:
    由于g(0)=f(0),g(1)=f(1),则直线y=f(0)(1-x)+f(1)x过点(0,f(0))和(1,f(1)),当f"(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1-x)+f(1)x的下方,即f(x)≤g(x)故应选(D).
    (方法二)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,
    则 F'(x)=f'(x)+f(0)-f(1),F"(x)=f"(x).当f"(x)≥0时,F"(x)≥0,则曲线y=F(x)在区间[0,1]上是凹的.又F(0)=F(1)=0,从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).
    (方法三)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,

    则 F(x)=f(x)[(1-x)+x]-f(0)(1-x)-f(1)x

    =(1-x)[f(x)-f(0)]-x[f(1)-f(x)]
       =x(1-x)f'(ξ)-x(1-x)f'(η) (ξ∈(0,x),η∈(x,1))
       =x(1-x)[f'(ξ)-f'(η)]
      当f"(x)≥0时,f'(x)单调增,f'(ξ)≤f'(η),从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).

  • 第16题:

    设f(x)在(-a,a)是连续的偶函数,且当0
    A. f(0)是f(x)在(-a,a)的极大值,但不是最大值
    B. f(0)是f(x)在(-a,a)的最小值
    C. f(0)是f(x)在(-a,a)的极大值,也是最大值
    D. f(0)是曲线y=f(x)的拐点的纵坐标


    答案:C
    解析:
    提示:f(x)是偶函数,当-a

  • 第17题:

    设f(x)是连续函数,F(x)是f(x)的原函数,则()。
    A.当f(x)是奇函数时,F(x)必是偶函数
    B.当f(x)是偶函数时,F(x)必是奇函数
    C.当f(x)是周期函数时,F(x)必是周期函数
    D.当f(x)是单调增函数时,F(x)必是单调增函数


    答案:B
    解析:

  • 第18题:

    设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是奇函数时,下面结论正确的是()。

    • A、F(x)是偶函数
    • B、F(x)是奇函数
    • C、F(x)可能是奇函数,也可能是偶函数
    • D、F(x)是否为奇函数不能确定

    正确答案:A

  • 第19题:

    设f(x)在(-a,a)(a>0)上连续,F(x)是f(x)的一个原函数,则当f(x)是偶函数时,下面结论正确的是()。

    • A、F(x)是偶函数
    • B、F(x)是奇函数
    • C、F(x)可能是奇函数,也可能是偶函数
    • D、F(x)是否是偶函数不能确定

    正确答案:D

  • 第20题:

    单选题
    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f"(x)>0,则在(-∞,0)内必有()。
    A

    f'(x)>0,f"(x)>0

    B

    f'(x)<0,f"(x)>0

    C

    f'(x)>O,f"(x)<0

    D

    f'(x)<0,f"(x)<0


    正确答案: A
    解析: 暂无解析

  • 第21题:

    判断题
    设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第22题:

    单选题
    设f(x)=-f(-x),x∈(-∞,+∞),且在(0,+∞)内f′(x)>0,f″(x)<0,则在(-∞,0)内(  )。
    A

    f′(x)>0,f″(x)>0

    B

    f′(x)>0,f″(x)<0

    C

    f′(x)<0,f″(x)>0

    D

    f′(x)<0,f″(x)<0


    正确答案: D
    解析:
    f(x)=-f(-x)⇔f(-x)=-f(x),则f(x)为奇函数。又f(x)可导,则f′(x)为偶函数,f″(x)存在且为奇函数,故在(-∞,0)内,f′(x)>0,f″(x)>0。

  • 第23题:

    单选题
    设f(x)在x=0处满足f′(0)=f″(0)=…=f(n)(0),f(n+1)(0)>0,则(  )。
    A

    当n为偶数时,x=0是f(x)的极大值点

    B

    当n为偶数时,x=0是f(x)的极小值点

    C

    当n为奇数时,x=0是f(x)的极大值点

    D

    当n为奇数时,x=0是f(x)的极小值点


    正确答案: C
    解析:
    此题可用举例法判断。当n=1时(即n为奇数),f′(0)=0,f″(0)>0。由f″(0)>0知f′(x)在x=0处单调增加。又f′(0)=0,x<0时f′(x)<0;x>0时f′(x)>0。因此f(x)在x=0点处取得极小值。
    当n=2时(即n为偶数),f′(0)=f″(0)=0,f‴(0)>0。由f‴(0)>0知,f″(x)在x=0处单调增加。因f″(0)=0,故f′(x)在x=0附近先减小后增加。f′(0)=0,故f(x)在x=0点处单调。因此x=0既不是f(x)的极大值也不是它的极小值。综上所述D项正确。