设y=f(x)由cos(xy)十Iny-x=1确定,则=().A.2 B.1 C.-1 D.-2

题目
设y=f(x)由cos(xy)十Iny-x=1确定,则=().


A.2
B.1
C.-1
D.-2


相似考题
更多“设y=f(x)由cos(xy)十Iny-x=1确定,则=(). ”相关问题
  • 第1题:

    设函数y=f(x)由方程确定,则=________.


    答案:1、1
    解析:

  • 第2题:

    设y=cos3x,则y'=(  )


    答案:D
    解析:
    y=cos3x,则y'=sin3x.(3x)'=-3sin3x.因此选D.

  • 第3题:

    填空题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

    正确答案: -1/7
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第4题:

    单选题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。
    A

    1/5

    B

    1/7

    C

    -1/7

    D

    -1/5


    正确答案: B
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第5题:

    填空题
    设z=f(xy,x/y)+g(y/x),其中f、g均可微,则∂z/∂x=____。

    正确答案: yf1′+f2′/y-yg′/x2
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,g′为函数g对x的导数。则∂z/∂x=∂f(xy,x/y)/∂x+∂g(y/x)/∂x=f1′y+f2′·(1/y)+g′·(-y/x2)=f1′y+f2′/y-yg′/x2

  • 第6题:

    单选题
    设z=f(xy,x/y)+g(y/x),其中f、g均可微,则∂z/∂x=(  )。
    A

    yf1′+f2′/y-yg′/x2

    B

    yf1′-f2′/y-yg′/x2

    C

    yf1′-f2′/y+yg′/x2

    D

    yf1′+f2′/y+yg′/x2


    正确答案: A
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,g′为函数g对x的导数。则∂z/∂x=∂f(xy,x/y)/∂x+∂g(y/x)/∂x=f1′y+f2′·(1/y)+g′·(-y/x2)=f1′y+f2′/y-yg′/x2

  • 第7题:

    单选题
    设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=(  )。
    A

    (ln2-1)dx

    B

    (l-ln2)dx

    C

    (ln2-2)dx

    D

    ln2dx


    正确答案: C
    解析:
    2xy=x+y等式两边求微分,得2xyln2d(xy)=dx+dy,即2xyln2(xdy+ydx)=dx+dy。当x=0时,y=1,代入上式得dy|x0=(ln2-1)dx。

  • 第8题:

    填空题
    设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则fx′(0,1,-1)=____。

    正确答案: 1
    解析:
    构造函数F(x,y,z)=x+y+z+xyz,则有∂z/∂x=-Fx′/Fz′=-(1+yz)/(1+xy),(∂z/∂x)|01,-1=0,又由f(x,y,z)=exyz2 ,得fx′=exyz2+exy·2z·zx′,代入(0,1,-1),得fx′(0,1,-1)=e0×1×(-1)2+e0×1×2×(-1)×0=1。

  • 第9题:

    单选题
    设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为(  )。
    A

    y+1=x/2

    B

    y-1=x/2

    C

    y+1=x

    D

    y-1=x


    正确答案: B
    解析:
    e2xy-cos(xy)=e-1方程两边对x求导,得e2xy(2+y′)+sin(xy)·(y+xy′)=0。当x=0时,y=1,y′=-2,因此,法线方程为y-1=x/2。

  • 第10题:

    填空题
    设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=____。

    正确答案: (ln2-1)dx
    解析:
    2xy=x+y等式两边求微分,得2xyln2d(xy)=dx+dy,即2xyln2(xdy+ydx)=dx+dy。当x=0时,y=1,代入上式得dy|x0=(ln2-1)dx。

  • 第11题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    -x-y=0

    B

    x-y-1=0

    C

    x-y=0

    D

    x+y=0


    正确答案: A
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。

  • 第12题:

    单选题
    设f(x,y)=ax+by,其中a,b为常数,则f[xy,f(x,y)]=(  )。
    A

    xy+bx+b2y

    B

    bxy+ax+by

    C

    bxy+ax-by

    D

    axy+abx+b2y


    正确答案: C
    解析:
    由f(x,y)=ax+by知,f[xy,f(x,y)]=axy+b(ax+by)=axy+abx+b2y。

  • 第13题:

    设f(x,y)=sin(xy2),则df(x,y)= .


    答案:
    解析:
    【应试指导】

  • 第14题:

    设函数y=2x+sinx,则y′=( )

    A.1-cos x
    B.1+cos x
    C.2-cos x
    D.2+cos x

    答案:D
    解析:

  • 第15题:

    填空题
    设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=____。

    正确答案: f2′+xf12″+xyf22
    解析:
    ∂z/∂x=f1′+yf2′,∂2z/(∂x∂y)=f11″·0+xf12″+f2′+yf22″·x=xf12″+f2′+xyf22

  • 第16题:

    单选题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=(  )。
    A

    1

    B

    -1

    C

    1/7

    D

    -1/7


    正确答案: B
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,故y′|x=0=f′(4)·4y′|x=0+f′(2)(1+y′|x=0),y′|x=0=4y′|x=0+(1+y′|x=0)/2,解得y′|x=0=-1/7。

  • 第17题:

    单选题
    设z=z(x,y)是由方程xz-xy+ln(xyz)=0所确定的可微函数,则∂z/∂y等于(  )。[2013年真题]
    A

    -xz/(xz+1)

    B

    -x+1/2

    C

    z(-xz+y)/[x(xz+1)]

    D

    z(xy-1)/[y(xz+1)]


    正确答案: B
    解析:
    将xz-xy+ln(xyz)=0两边对y求偏导,得xzy′-x+x(z+y·zy′)/(xyz)=0,整理得zy′=z(xy-1)/[y(xz+1)]。

  • 第18题:

    填空题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为____。

    正确答案: x-y=0
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。

  • 第19题:

    填空题
    设f(x,y)=ax+by,其中a,b为常数,则f[xy,f(x,y)]=____。

    正确答案: axy+abx+b2y
    解析:
    由f(x,y)=ax+by知,f[xy,f(x,y)]=axy+b(ax+by)=axy+abx+b2y。

  • 第20题:

    填空题
    已知函数y=y(x)由方程ey+6xy+x2-1=0所确定,则y″(0)=____。

    正确答案: -2
    解析:
    ey+6xy+x2-1=0两边对x求导,得ey·y′+6xy′+6y+2x=0①。两边再对x求导,得ey·y″+ey(y′)2+6xy″+12y′+2=0②。当x=0时,y=0,将x=0,y=0代入①得y′(0)=0,再将x=y=y′(0)=0代入②得y″(0)=-2。

  • 第21题:

    填空题
    设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____。

    正确答案: y-1=x/2
    解析:
    e2xy-cos(xy)=e-1方程两边对x求导,得e2xy(2+y′)+sin(xy)·(y+xy′)=0。当x=0时,y=1,y′=-2,因此,法线方程为y-1=x/2。

  • 第22题:

    单选题
    设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=(  )。
    A

    ln2-1

    B

    (ln2-1)dx

    C

    ln2+1

    D

    (ln2+1)dx


    正确答案: D
    解析:
    2xy=x+y等式两边求微分,得2xyln2d(xy)=dx+dy,即2xyln2(xdy+ydx)=dx+dy。当x=0时,y=1,代入上式得dy|x0=(ln2-1)dx。

  • 第23题:

    单选题
    函数y=f(x)是由方程xy+2lnx=y4所确定,则曲线y=f(x)在点(1,1)处的切线方程为(  )。
    A

    x-y=0

    B

    x+y=0

    C

    -x-y=0

    D

    -x+y=0


    正确答案: C
    解析:
    xy+2lnx=y4两端对x求导,得y+xy′+2/x=4y3·y′。x=1时,y=1,y′(1)=1,则切线方程为y-1=x-1,即x-y=0。