阅读下列程序说明和C代码,将应填入(n)处的字句写在对应栏内。【说明】“背包问题”的基本描述是:有一个背包,能盛放的物品总重量为S,设有N件物品,其重量分别为w1,w2,…,wn。希望从N件物品中选择若干件物品,所选物品的重量之和恰能放入该背包,即所选物品的重量之和等于S。如下程序均能求得“背包问题”的一组解,其中程序1是“背包问题”的递归解法,而程序2是“背包问题”的非递归解法。【程序1】include<stdio.h>define N 7define S 15int w[N+1]={0,1,4,3,4

题目

阅读下列程序说明和C代码,将应填入(n)处的字句写在对应栏内。

【说明】

“背包问题”的基本描述是:有一个背包,能盛放的物品总重量为S,设有N件物品,其重量分别为w1,w2,…,wn。希望从N件物品中选择若干件物品,所选物品的重量之和恰能放入该背包,即所选物品的重量之和等于S。

如下程序均能求得“背包问题”的一组解,其中程序1是“背包问题”的递归解法,而程序2是“背包问题”的非递归解法。

【程序1】

include<stdio.h>

define N 7

define S 15

int w[N+1]={0,1,4,3,4,5,2,7};

int knap(int s, int n)

{

if(s==0) return 1;

if(s<0 || (s>0 && n<1))return 0;

if((1)){/*考虑物品n被选择的情况*/

printf("%4d",w[n]);

return 1;

}

return (2);/*考虑不选择物品n的情况*/

}

main()

{

if(knap(S,N))printf("OK!\n");

else printf("N0!\n");

}

【程序2】

include<stdio.h>

define N 7

define S 15

typedef struct{

int s;

int n;

int job;

}KNAPTP;

int w[N+1]={0,1,4,3,4,5,2,7};

int knap(int s, int n);

main()

{

if(knap(S,N)) printf("0K!\n");

else printf("N0!\n");

}

int knap(int s, int n)

{

KNAPTP stack[100],x;

int top, k, rep;

x.s=s;x.n=n;

x.job=0;

top=1; stack[top]=x;

k=0;

while( (3) ){

x=stack[top];

rep=1;

while(!k && rep){

if(x.s==0) k=1;/*已求得一组解*/

else if(x.s<0 || x.n<=0) rep=0;

else{

x.s=(4);

x.job=1;

(5)=x;

}

}/*while*/

if(!k){

rep=1;

while(top>=1 && rep){

x=stack[top--];

if(x.job==1){

x.s +=w[x.n+1];

x.job=2;

stack[++top]=x;

(6);

}/*if*/

}/*while*/

}/*if*/

/*while*/

if(k){&nbs


相似考题
参考答案和解析
正确答案:(1) knap(s-w[n]n-1) (2) knap(sn-1) (3) top>=1 && !k 或 top>0 && k==0 (4) x.s-w[x.n--] (5) stack[++top] (6) rep=0
(1) knap(s-w[n],n-1) (2) knap(s,n-1) (3) top>=1 && !k 或 top>0 && k==0 (4) x.s-w[x.n--] (5) stack[++top] (6) rep=0 解析:本题考查“背包”问题,这是一个非常经典的问题,一般采用递归法实现。
典型做法是逐个考查每一件物品,对于第i件物品的选择考虑有两种可能。
.考虑物品i被选择,这种可能仅当包含它不会超过方案总重量限制时才是可行的。选中后继续递归考虑其余物品的选择。
.考虑物品i不被选择,这种可能仅当不包含物品i也有可能找到价值更大的方案时才是可行的。
程序1是递归算法实现。对每个物品i,考查选择放入和不放入背包两种情况。函数knap(int s,int n)中,形参s是考查完物品i后背包还能装载的重量,n是考查完物品i后下一个待考查的物品。每次选择一个物品放入背包,那么剩余的物品和背包剩余重量又构成一个“背包问题”。根据注释,空(1)是考查物品n放入背包的情况,既然放入背包,则背包剩余可装重量为 s-w[n],继续考查物品n-1。这点可从主函数的调用形式“knap(S,N)”分析出。故空(1)应填“knap(s-w[n],n-1)”。空(2)是考查物品n不放入背包的情况,既然不放入背包,则背包可装重量仍为s,继续考查物品n-1。故空(2)应填“knap(s,n-1)”。
程序2是非递归算法实现,相对较难。算法思想仍是对每个物品i分别考查选择放入和不放入两种情况,借助栈实现,即数组stack。其实就是手动完成递归算法中由系统自动完成的压栈、出栈操作。
据注释“k=1时则求得一组解”可知k为是否求得解的标志:k=0表示没有解,继续求解。经分析,结构变量KNAPTP表示经过考查的物品:分量s表示考查过该物品后,背包所能盛放的物品的重量,分量n表示待考查的下一个物品在数组w中的下标,分量job表示物品当前的状态,job等于1表示物品n可以放入背包,job等于2表示物品不能放入背包,在以后的选取中将不再考虑该物品,初始时job等于0表示背包中没有放入任何物品。rep是一个标志变量,等于。表示结束当前的动作,等于1表示继续进行当前的动作;当栈顶物品不能装入背包时,将rep置为0,表示下一步不再从数组w中取物品。rep初值为1。x为工作节点。
while( (3) )循环体内的语句可以肯定是考查各个物品n的选择情况。对物品n,先考查将物品放入背包的情况。显然,如果物品n满足放入背包的条件,则空(4)和空(5)完成将物品放入背包的操作,其中空(4)应该是将工作节点x的分量s值减去所考查物品的重量。且n要减1,修改背包可容纳物品的重量和设置下一个待考查物品。而空(5)则需要将修改后的工作节点x送到栈顶,将下一个待考查的物品入栈。故空(4)应填“x.s-w[x.n--]”,空(5)应填“stack[++top]”。
if(!k)后的程序段是处理所考查的物品不满足放入背包的条件时的情况(rep=0,while(!k && rep)循环结束),则将该物品从背包中取出,修改其job值为2,用以标记该物品不能放入背包。修改完后跳出while(top>=1 && rep)循环,因此需要将rep置为0,用以结束循环。故空(6)应填“rep=0”。
更多“阅读下列程序说明和C代码,将应填入(n)处的字句写在对应栏内。 【说明】 “背包问题”的基本描述是:有 ”相关问题
  • 第1题:

    ●试题二

    阅读下列函数说明和C代码,将应填入(n)处的字句写在答题纸的对应栏内。

    【说明】

    该程序运行后,输出下面的数字金字塔

    【程序】

    include<stdio.h>

    main ()

    {char max,next;

    int i;

    for(max=′1′;max<=′9′;max++)

    {for(i=1;i<=20- (1) ;++i)

    printf(" ");

    for(next= (2) ;next<= (3) ;next++)

    printf("%c",next);

    for(next= (4) ;next>= (5) ;next--)

    printf("%c",next);

    printf("\n");

    }

    }


    正确答案:
    ●试题二【答案】(1)(max-′0′)(2)′1′(3)max(4)max-1(5)′1′【解析】该程序共有9行输出,即循环控制变量max的值是从1~9。每行输出分3部分,先用循环for语句输出左边空白,(1)空填"(max-′0′)";再用循环输出从1到max-′0′的显示数字,即(2)空和(3)空分别填1和max;最后输出从max-′1′~1的显示数字,即(4)空和(5)空分别填和max-1和′1′。

  • 第2题:

    阅读下列说明和C++-代码,将应填入(n)处的字句写在答题纸的对应栏内。 【说明】 某发票(lnvoice)由抬头(Head)部分、正文部分和脚注(Foot)部分构成。现采用装饰(Decorator)模式实现打印发票的功能,得到如图5-1所示的类图。

    【C++代码】 #include using namespace std; class invoice{ public: (1){ cout<<"This is the content of the invoice!"<

    答案:
    解析:
    (1) virtual void printInvoice() (2) ticket->printInvoice() (3) Decorator::printInvoice() (4) Decorator::printInvoice() (5) &a
    【解析】

    试题分析
    1.Invoice类下,义虛函数,按类图,函数名是printInvoice
    2.前面定义对象名是ticket,那么在ticket不为空的时候调用函数printInvoice
    3.这部分填写发票的抬头,看类图应该实现函数printInvoice ,Decorator装饰模式使用该方法
    4.这部分是发票的脚注,看类图应该实现函数printlnvoice,Decorator装饰模式使用该方法
    5.FootDecorator a(NULL) ;脚步的装饰参数是a,调用a参数,

  • 第3题:

    阅读下列说明和Java代码,将应填入(n)处的字句写在答题纸的对应栏内。【说明】 某文件管理系统中定义了类OfficeDoc和DocExplorer,当类OfficeDoc发生变化时,类DocExplorer的所有对象都要更新其自身的状态,现采用观察者(Observer)设计模式来实现该需求,所设计的类图如图6-1所示。



    答案:
    解析:
    1: void update()2: Observer3: obs.update()4: Subject5: Attach(this)

  • 第4题:

    试题三(共 15 分)

    阅读以下说明和 C 程序,将应填入 (n) 处的字句写在答题纸的对应栏内。


    正确答案:

  • 第5题:

    阅读下列说明和C++代码,回答问题,将解答填入答题纸的对应栏内。
    【说明】某航空公司的会员积分系统将其会员划分为:普卡 (Basic)、银卡(Silver)和金卡 (Gold) 三个等级。非会员 (NonMember) 可以申请成为普卡会员。会员的等级根据其一年内累积 的里程数进行调整。描述会员等级调整的状态图如图 5-1 所示。现采用状态 (State) 模式实现上述场景,得到如图 5-2 所示的类图。




    【问题1】(15分)阅读上述说明和C++代码,将应填入 (n) 处的字句写在答题纸的对应栏内。


    答案:
    解析:
    注意:原版的题目应该是Cbasic、CSilve。(1) virtual double travel(int miles,FrequentFlyer* context)=0(2)context->setState(context->Cbasic)(3)context->setState(context->CSilve)(4)context->setState(context->Cbasic)(5)context->setState(context->CSilve)

  • 第6题:

    阅读下列说明和?C++代码,将应填入(n)处的字句写在答题纸的对应栏内。
    【说明】
    阅读下列说明和?Java代码,将应填入?(n)?处的字句写在答题纸的对应栏内。
    【说明】
    某快餐厅主要制作并出售儿童套餐,一般包括主餐(各类比萨)、饮料和玩具,其餐品种
    类可能不同,但其制作过程相同。前台服务员?(Waiter)?调度厨师制作套餐。现采用生成器?(Builder)?模式实现制作过程,得到如图?6-1?所示的类图。






    答案:
    解析: