若函数y=f(x)满足条件(63),则在(a,B)内至少存在一点c(a<c<B),使得f′(C)=(f(B)-f(A))/(b-A)成立。A.在(a,B)内连续B.在(a,B)内可导;C.在(a,B)内连续,在(a,B)内可导;D.在[a,B]内连续,在(a,B)内可导。

题目

若函数y=f(x)满足条件(63),则在(a,B)内至少存在一点c(a<c<B),使得f′(C)=(f(B)-f(A))/(b-A)成立。

A.在(a,B)内连续

B.在(a,B)内可导;

C.在(a,B)内连续,在(a,B)内可导;

D.在[a,B]内连续,在(a,B)内可导。


相似考题
参考答案和解析
正确答案:D
解析:由拉格朗日定理条件,函数f(x)在[a,b)内连续,在(a,b)内可导,所以选择D正确。
更多“若函数y=f(x)满足条件(63),则在(a,B)内至少存在一点c(a<c<B),使得f′(C)=(f(B)-f(A))/(b-A)成立。A ”相关问题
  • 第1题:

    设y=f(x)是(a,b)内的可导函数,x和x+Δx是(a,b)内的任意两点,则:
    A. Δy=f' (x)Δx
    B.在x,x+Δx之间恰好有一点ξ,使Δy=f' (ξ)Δx
    C.在x,x+Δx之间至少有一点ξ,使Δy=f' (ξ)Δx
    D.在x,x+Δx之间任意一点ξ,使Δy=f' (ξ)Δx


    答案:C
    解析:
    提示:利用拉格朗日中值定理计算,f(x)在[x,x+Δx]连续,在(x,x+Δx)可导,则有f(x+Δx)-f(x)=f'(x)(至少存在一点ξ,x

  • 第2题:

    设y=f(x)是(a, b)内的可导函数,X,X+ΔX是(a, b)内的任意两点,则:
    (A) Δy= f‘ (x)Ax
    (B)在x,x+Ax之间恰好有一点ξ,使Δy=f'(ξ)Ax
    (C)在x, x+Ax之间至少有一点ξ,使Δy=f'(ξ)Ax
    (D)对于x,x+ax之间任意一点ξ,使Δy=f'(ξ)Ax


    答案:C
    解析:
    解:选C。这道题考察拉格朗日中值定理:如果函数f(x)在闭区间[a+b]上连续,在开区f(b)-f (a) = f'(ε)(b-a)。
    依题意可得:y=f(x)在闭区间X,X+ΔX上可导,满足拉格朗日中值定理,因此可的答案C。

  • 第3题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:
    A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0
    C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0


    答案:B
    解析:
    提示:已知f(x)在(-∞,+∞)上是偶函数,函数图像关于y轴对称,已知函数在(0,+∞),f'(x)>0, f''(x)>0,表明在(0,+∞)上函数图像为单增且凹向,由对称性可知,f(x)在(-∞,0)单减且凹向,所以f'(x)<0, f''(x)>0。

  • 第4题:

    已知微分方程y’+y=f(x),其中f(x)是R上的连续函数.
      (Ⅰ)若f(x)=x,求方程的通解.
      (Ⅱ)若f(x)是周期为T的函数,证明:方程存在唯一的以T为周期的解.


    答案:
    解析:
    【解】(Ⅰ)若f(x)=x,则方程为y'+y=x通解为


    (Ⅱ)设y(x)为方程的任意解,则y'(x+T)+y(x+T)=f(x+T).
    而f(x)周期为T,有f(x+T)=f(x).又y'(x)+y(x)=f(x).
    因此y'(x+T)+y(x+T)-y'(x)-y(x)=0,有(e^x[y(x+T)-y(x)])'=0,
    即e^x[y(x+T)=y(x)]=C.取C=0得y(x+T)-y(x)=0,
    y(x)为唯一以T为周期的解.

  • 第5题:

    设y=f(x)是(a,b)内的可导函数,x,x+△x是(a,b)内的任意两点,则:

    A. △y=f’(x)△x
    B.在x,x+△x之间恰好有一点ξ,使△y=f’(ξ)△x
    C.在x,x+△x之间至少存在一点ξ,使△y=f’(ξ)△x
    D.在x,x+△x之间的任意一点ξ,使△y=f’(ξ)△x

    答案:C
    解析:

  • 第6题:

    若实值函数f定义域为全体实数,且满足任意x,y:f(x+y)=f(x)f(y)。此时,若f(8)=4,则有f(2)=( )。
    A. 0 D. 2


    答案:C
    解析:

  • 第7题:

    若f(x)=-f(-x),在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内( )《》( )

    A.f′(x)<f″(x)<0
    B.f′(x)<f″(x)>0
    C.f′(x)>f″(x)<0
    D.f′(x)>f″(x)>0

    答案:C
    解析:

  • 第8题:

    下列四类函数中,有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)f(y)”的是()。

    • A、幂函数
    • B、对数函数
    • C、指数函数
    • D、余弦函数

    正确答案:C

  • 第9题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f"(x)>0,则在(-∞,0)内必有()。

    • A、f'(x)>0,f"(x)>0
    • B、f'(x)<0,f"(x)>0
    • C、f'(x)>O,f"(x)<0
    • D、f'(x)<0,f"(x)<0

    正确答案:B

  • 第10题:

    单选题
    (2009)设y=f(x)是(a,b)内的可导函数,x+△x是(a,b)内的任意两点,则:()
    A

    △y=f′(x)△x

    B

    在x,x+△x之间恰好有一点ξ,使△y=f′(ξ)△x

    C

    在x,x+△x之间至少有一点ξ,使△y=f′(ξ)△x

    D

    在x,x+△x之间任意一点ξ,使△y=f′(ξ)△x


    正确答案: C
    解析: 暂无解析

  • 第11题:

    单选题
    若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点(x1<x2),则至少存在一点ξ,使(  )
    A

    f(b)-f(a)=f′(ξ)(b-a)(a<ξ<b)

    B

    f(b)-f(x1)=f′(ξ)(b-x1)(x1<ξ<b)

    C

    f(x2)-f(x1)=f′(ξ)(x2-x1)(x1<ξ<x2

    D

    f(x2)-f(a)=f′(ξ)(x2-a)(a<ξ<x2


    正确答案: C
    解析:
    考查拉格朗日中值定理的应用。
    值得注意的是,当函数f(x)在[a,b]上连续且在(a,b)内可导时,才可在[a,b]上对函数f(x)应用拉格朗日中值定理。
    由于题中没有说明函数f(x)在[a,b]上连续,因此有可能f(x)在x=a或x=b上没有定义,选项中涉及f(a)、f(b)的均为错误选项。

  • 第12题:

    问答题
    若函数f(x,y,z)恒满足关系式f(tx,ty,tz)=tkf(x,y,z)就称为k次齐次函数,验证k次齐次函数满足关系式(其中f存在一阶连续偏导数)x∂f/∂x+y∂f/∂y+z∂f/∂z=kf(x,y,z)。

    正确答案:
    为简化计算,可令u=tx,v=ty,w=tz,则f(u,v,w)=tkf(x,y,z),两边对t求导,得x∂f/∂u+y∂f/∂v+z∂f/∂w=ktk-1f(x,y,z),则上式对一切实数t都成立。令t=1,得x∂f/∂x+y∂f/∂y+z∂f/∂z=kf(x,y,z)。
    解析: 暂无解析

  • 第13题:

    设函数f(x)在(-∞,+∞)上是奇函数,在(0,+∞)内有f'(x)<0, f''(x)>0,则在(-∞,0)内必有:
    A. f'>0, f''>0 B.f'<0, f''<0
    C. f'<0, f''>0 D. f'>0, f''<0


    答案:B
    解析:
    提示:已知f(x)在(-∞,+∞)上是奇函数,图形关于原点对称,由已知条件f(x)在(0,+∞),f'<0单减, f''>0凹向,即f(x)在(0,+∞)画出的图形为凹减,从而可推出关于原点对称的函数在(-∞,0)应为凸减,因而f'<0, f''<0。

  • 第14题:

    设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,
    则在(- ∞ ,0)内必有:
    (A) f ' > 0, f '' > 0 (B) f ' 0
    (C) f ' > 0, f ''


    答案:B
    解析:
    解:选 B。
    偶函数的导数是奇函数,奇函数的导数是偶函数。
    f (x)是偶函数,则 f '(x)是奇函数,当x > 0时, f '(x) > 0,则x f '(x)是奇函数,则 f ''(x)是奇函数,当x > 0时, f '(x) > 0,则x 0;
    点评:偶函数的导数是奇函数,奇函数的导数是偶函数。

  • 第15题:

    若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是:
    A.f(x,y)的极值点一定是f(x,y)的驻点
    B.如果P0是f(x,y)的极值点,则P0点处B2-AC
    C.如果P0是可微函数f(x,y)的极值点,则在P0点处df=0
    D.f(x,y)的最大值点一定是f(x,y)的极大值点


    答案:C
    解析:
    提示:在题目中只给出f(x,y)在闭区域D上连续这一条件,并未讲函数f(x,y)在P0点是否具有一阶、二阶偏导,而选项A、B判定中均利用了这个未给的条件,因而选项A、B不成立。选项D中f(x,y)的最大值点可以在D的边界曲线上取得,因而不一定是f(x,y)的极大值点,故选项D不成立。
    在选项C中,给出p0是可微函数的极值点这个条件,因而f(x,y)在P0偏导存在,且

  • 第16题:

    (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.


    答案:
    解析:

  • 第17题:

    若实值函数f定义域为全体实数,且满足任意x,y:f(x+y)=f(x)f(y)。此时,若f(8) = 4,则有f(2)=( )。


    答案:C
    解析:

  • 第18题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。
    A. f'(x)>0,f''(x)>0 B. f(x) 0
    C. f'(x)>0,f''(x)


    答案:B
    解析:
    提示:f(x)在(-∞,+∞)上是偶函数,f'(x)在(-∞,+∞)在上是奇函数,f''(x)在(-∞,+∞)在上是偶函数,故应选B。

  • 第19题:

    若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:()

    • A、(f″(x)f(x)-[f′(x)]2)/[f(x)]2
    • B、f″(x)/f′(x)
    • C、(f″(x)f(x)+[f′(x)]2)/[f(x)]2
    • D、ln″[f(x)]·f″(x)

    正确答案:A

  • 第20题:

    设函数在(a,b)内连续,则在(a,b)内()。

    • A、f(x)必有界
    • B、f(x)必可导
    • C、f(x)必存在原函数
    • D、D.必存在一点ξ∈(a,,使f(ξ)=0

    正确答案:C

  • 第21题:

    问答题
    设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

    正确答案:
    因为f(x)不恒为常数,且f(a)=f(b),故必存在一点c∈(a,b),满足f(c)≠f(a)=f(b)。
    若f(c)>f(a)=f(b),f(x)在[a,c]上满足拉格朗日中值定理,故至少存在一点ξ∈(a,c)⊂(a,b),使得f′(ξ)=[f(c)-f(a)]/(c-a)>0。
    若f(c)0。综上命题得证。
    解析: 暂无解析

  • 第22题:

    单选题
    若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:()
    A

    (f″(x)f(x)-[f′(x)]2)/[f(x)]2

    B

    f″(x)/f′(x)

    C

    (f″(x)f(x)+[f′(x)]2)/[f(x)]2

    D

    ln″[f(x)]·f″(x)


    正确答案: B
    解析: 暂无解析

  • 第23题:

    单选题
    设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数f(x)是(  )。
    A

    奇函数

    B

    偶函数

    C

    周期函数

    D

    单调函数


    正确答案: C
    解析:
    对该函数由f(x+2k)=1/f(x+k)=f(x),故f(x)是周期函数。