更多“●从任意初始值XO开始,通过迭代关系式Xn=Xn-1/2+1(n=1,2,…),可形成序列X1,X2,…。该序列将收敛于(65 ”相关问题
  • 第1题:

    设X1,X2,…,Xn,…相互独立,则X1,X2,…,Xn,…满足辛钦大数定律的条件是( )




    A.X1,X2,…,Xn,…同分布且有相同的数学期望与方差
    B.X1,X2,…,Xn,…同分布且有相同的数学期望
    C.X1,X2,…,Xn,…为同分布的离散型随机变量
    D.X1,X2,…,Xn,…为同分布的连续型随机变量

    答案:B
    解析:
    根据辛钦大数定律的条件,应选(B).

  • 第2题:

    已知样本x1,x2,…,xn,其中μ未知。下列表达式中,不是统计量的是()。
    A. X1 +X2 B. max(x1,x2,…,xn)
    C. X1 +X2 -2μ D. (X1 -μ)/σ
    E. X1 +μ


    答案:C,D,E
    解析:
    不含未知参数的样本函数称为统计量。CDE三项都含有未知数μ,不是统计量。

  • 第3题:

    设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,依概率收敛于_______.


    答案:
    解析:
    本题是数三的考题,根据切比雪夫大数定律或者辛钦大数定律,依概率收敛于答案应填

  • 第4题:

    设总体X服从正态分布N(μ,σ^2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,Xn(n≥2),其样本均值,求统计量的数学期望E(Y).


    答案:
    解析:

  • 第5题:

    设X1,2X,…,Xn(n>2)相互独立且都服从N(0,1),Yi=Xi-X(i=1,2,…,n).求:
      (1)D(Yi)(i=1,2,…,n);(2)Cov(Y1,Yn);(3)P(Yn+Yn≤0).


    答案:
    解析:

  • 第6题:

    从均值为μ、方差为σ2的总体中抽得一个容量为n的样本X1,X2,…,Xn,其中μ已知,σ2未知,下列各项属于统计量的有( )。



    答案:A,B,C
    解析:
    统计量是不含未知参数的样本函数,因此DE两项不是统计量。

  • 第7题:

    若Ad-I=0,那么d是由Z2上n阶线性常系数齐次递推关系式产生的什么序列周期?()

    • A、不存在这样的序列
    • B、任意序列
    • C、项数小于3的序列
    • D、项数等于7的序列

    正确答案:B

  • 第8题:

    单选题
    已知序列X={x1,x2,…,xm},序列Y={y1,y2,…,yn},使用动态规划算法求解序列X和Y的最长公共子序列,其最坏时间复杂度为()。
    A

    O(m*n)

    B

    O(m+n)

    C

    O(m*2n

    D

    O(n*2m


    正确答案: A
    解析: 暂无解析

  • 第9题:

    问答题
    设总体X~N(μ,σ2),x1,x2,…xn为其样本,为样本均值,则____.

    正确答案:
    解析:

  • 第10题:

    单选题
    若Ad-I=0,那么d是由Z2上n阶线性常系数齐次递推关系式产生的什么序列周期?()
    A

    不存在这样的序列

    B

    任意序列

    C

    项数小于3的序列

    D

    项数等于7的序列


    正确答案: D
    解析: 暂无解析

  • 第11题:

    问答题
    设函数f(x)在(a,b)内连续,a<x1<x2<…<xn<b,证明:必∃ξ∈(a,b),使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。

    正确答案:
    设f(x)在[x1,xn]上的最大值为M,最小值为m。
    则由题设可知,f(x)在[x1,xn]上连续,则它在[x1,xn]上必有最大值和最小值,则m≤[f(x1)+f(x2)+…+f(xn)]/n≤M。
    由最值介值定理可知,必∃ξ∈[x1,xn]⊂(a,b),使得f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。
    解析: 暂无解析

  • 第12题:

    问答题
    设X1,X2,…,Xn相互独立且同服从分布B(1,p),Z=X1+X2+…+Xn,证明Z~B(n,p)。

    正确答案:
    利用数学归纳法。
    当k=2时,X1+X2=Z~B(2,p)。
    假设当k=n-1时,X1+X2+…+Xn-1=Z1~B(n-1,p)。
    则当k=n时,Z=(X1+X2+…+Xn-1)+Xn=Z1+Xn,Z~B(n-1+1,p),即Z~B(n,p)。
    解析: 暂无解析

  • 第13题:

    从正态总体X~N(0,σ^2)中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ^2的无偏估计量的是().



    答案:A
    解析:

  • 第14题:

    设X1,X2,…Xn是简单随机样本,则有( )。
    A. X1,X2,…Xn相互独立 B. X1,X2,…Xn有相同分布
    C. X1,X2,…Xn彼此相等 D.X1与(X1,+X2)/2同分布
    E.X1与Xn的均值相等


    答案:A,B,E
    解析:
    简单随机样本满足随机性和独立性,且每一个样本都与总体同分布,样本均值相等。

  • 第15题:

    设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi-(i=1,2,…,n).求:(1)D(Yi);(2)Cov(Yb,Yn).


    答案:
    解析:

  • 第16题:

    若随机变量x1,x2,…,xn相互独立同分布于N{μ,2^2},则根据切比雪夫不等式得P{|x-μ|≥2)≤_______.


    答案:
    解析:
    因为X1,X2…,Xn相互独立同分布于N(μ,2^2),所以,从而

  • 第17题:

    设总体X~N(0,σ2),X1,X2,...Xn是自总体的样本,则σ2的矩估计是:


    答案:D
    解析:
    提示 注意 E(x)=0,σ2=D(x)=E(x2) - [E(x)]2=E(x2),σ2也是x的二阶原点矩,σ2的矩估计量是样本的二阶原点矩。

  • 第18题:

    设进行线性卷积的两个序列x1(n)和x2(n)的长度分别为M和N,在什么条件下它们的循环卷积结就是线性卷积?


    正确答案: 在它们的后面添加零,使它们成为长度L=M+N-1的序列,再求它们的L点的循环卷积,结果序列长度为L。则循环卷积结果就是线性卷积。

  • 第19题:

    设X1,X2,…,Xn是从总体X中抽取的容量为n的一个样本,如果由此样本构造一个函数T(X1,X2,…,Xn),不依赖于任何未知参数,则函数T(X1,X2,…,Xn)是一个()


    正确答案:统计量

  • 第20题:

    多选题
    设随机变量X仅取n个值x1, x2,… xn,其概率函数为P(X=xi)=pi,则(  )。
    A

    -1≦pi≦1,i=1,2…,n 

    B

    pi≧0,i=1,2,…,n  

    C

    p1+p2+…+Pn≦1    

    D

    p1+p2+…+Pn=1


    正确答案: B,A
    解析: 暂无解析

  • 第21题:

    问答题
    总体x~N(μ,σ2),x1,x2,…,xn为其样本,未知参数μ的矩估计为_______ .

    正确答案:
    解析:

  • 第22题:

    问答题
    设A为n阶方阵,若对任意n维向量x(→)=(x1,x2,…,xn)T都有Ax(→)=0。证明:A=0。

    正确答案:
    由对任意n维向量x()都有Ax()=0,知对基本单位向量组ε()1,ε()2,…,ε()n,Aε()i=0(i=1,2,…,n)成立。
    所以有A(ε()1,ε()2,…,ε()n)=0,即AE=0,故A=0。
    解析: 暂无解析

  • 第23题:

    问答题
    设A为n阶方阵,若对任意n维向量X=(x1,x2,…,xn)T都有AX=0.证明:A=0.

    正确答案:
    证明:由对任意n维向量X都有AX=0,知对基本单位向量组ε1,ε2,…,εn,Aεi=0(i=1,2,…,n)成立.
    所以有A(ε1,ε2,…,εn)=0,即AE=0,故A=0.
    解析: 暂无解析