已知函数y=f(x)在x1和x2处的值分别为y1和y2,其中,x2>x1且x2-x1比较小(例如0.01),则对于(x1,x2)区间内的任意x值,可用线性插值公式()近似地计算出f(x)的值A.y1+(y2-y1)(x-x1)/(x2-x1) B.x1+(y2-y1)(x-x1)/(x2-x1) C.y2+(y2-y1)(x2-x1)/(x-x1) D.x2+(x2-x1)(x-x1)/(y2-y1)

题目
已知函数y=f(x)在x1和x2处的值分别为y1和y2,其中,x2>x1且x2-x1比较小(例如0.01),则对于(x1,x2)区间内的任意x值,可用线性插值公式()近似地计算出f(x)的值

A.y1+(y2-y1)(x-x1)/(x2-x1)
B.x1+(y2-y1)(x-x1)/(x2-x1)
C.y2+(y2-y1)(x2-x1)/(x-x1)
D.x2+(x2-x1)(x-x1)/(y2-y1)

相似考题

2.阅读以下说明和C++代码,[说明]现要编写一个画矩形的程序,目前有两个画图程序:DP1和DP2,DP1用函数draw_a_line(x1,y1,x2,y2)画一条直线,DP2则用drawline(x1,x2,y1,y2)画一条直线。当实例化矩形时,确定使用DP1还是DP2。为了适应变化,包括“不同类型的形状”和“不同类型的画图程序”,将抽象部分与实现部分分离,使它们可以独立地变化。这里,“抽象部分”对应“形状”,“实现部分”对应“画图”,与一般的接口(抽象方法)与具体实现不同。这种应用称为Bridge(桥接)模式。图6-1显示了各个类间的关系。[图6-1]这样,系统始终只处理3个对象:Shape对象、Drawingg对象、DP1或DP2对象。以下是C++语言实现,能够正确编译通过。[C++代码]class DP1{public:static void draw_a_line(double x1,double y1,double x2,double y2){//省略具体实现}};class DP2{public:static void drawline(double x1,double x2,double y1,double y2){//省略具体实现}};class Drawing{public:(1) void drawLine(double x1,double y1,double x2,double y2)=0;};class V1Drawing:public Drawing{public:void drawLine(double x1,double y1,double x2,double y2){DP1::draw_a_line(x1,y1,x2,y2);}};class V2Drawing:public Drawing{public:void drawLine(double x1,double y1,double x2,double y2){(2)}};class Shape{privatc:(3) dp;public:Shape(Drawing*dp);virtual void draw()=0;void drawLine(double x1,double y1,double x2,double y2);};Shape::Shape(Drawing*dp){_dp=dp;}void Shape::drawLine(double x1,double y1,double x2,double y2){ //画一条直线(4);}class Rectangle:public Shape{privatc:double_x1,_y1,_x2,_y2;public:Rectangle(Drawing *dp,double x1,double y1,double x2,double y2);void draw();};Rectangle::Rectangle(Drawing*dp,double x1,double y1,double x2,double y2): (5){_x1=x1;_y1=yl;_x2=x2;_y2=y2;}void Rectangle::draw(){//省略具体实现}(1)

更多“已知函数y=f(x)在x1和x2处的值分别为y1和y2,其中,x2>x1且x2-x1比较小(例如0.01),则对于(x1,x2)区间内的任意x值,可用线性插值公式()近似地计算出f(x)的值”相关问题
  • 第1题:

    阅读以下说明和c++代码,将应填入(n)处的字句写在对应栏内。

    【说明】

    现要编写一个画矩形的程序,目前有两个画图程序:DP1和DP2,DP1用函数draw_a_line(x1, y1,x2,y2)画一条直线,DF2则用drawline(x1,x2,y1,y2)画一条直线。当实例画矩形时,确定使用DP1还是DP2。为了适应变化,包括“不同类型的形状”和“不同类型的画图程序”,将抽象部分与实现部分分离,使它们可以独立地变化。这里,“抽象部分”对应“形状”,“实现 部分”对应“画图”,与一般的接口(抽象方法)与具体实现不同。这种应用称为Bridge(桥接)模式。图9-7显示了各个类间的关系。

    这样,系统始终只处理3个对象:Shape对象、Drawing对象、DP1或DP2对象。以下是 C++语言实现,能够正确编译通过。

    【C++代码】

    class DP1{

    public:

    static void draw_a_line(double x1, double y1,double x2, double y2){

    //省略具体实现

    }

    );

    class DP2{

    public:

    static void drawline(double x1, double x2,double y1, double y2){

    //省略具体实现

    }

    };

    class Drawing{

    public:

    (1) void drawLine(double x1,double y1,double x2,double y2)=0;

    };

    class V1Drawing:public Drawing{

    public:

    void drawLine(double x1, double y1,double x2, double y2){

    DP1::draw_a_line(x1,y1,x2,y2);

    }

    };

    class V2Drawing:public Drawing{

    public:

    void drawLine(double x1, double y1, double x2, double y2){

    (2);

    }

    };

    class Shape{

    private:

    (3) _dp;

    public:

    Shape(Drawing *dp);

    virtual void draw()=0;

    void drawLine(double x1, double y1, double x2, double y2);

    };

    Shape::Shape(Drawing *dp)

    {

    _dp = dp;

    }

    void Shape::drawLine(double x1, double y1, double x2, double y2)

    { //画一条直线

    (4);

    }

    class Rectangle: public Shape{

    private:

    double _x1,_y1,_x2,_y2;

    public:

    Rectangle(Drawing *dp, double x1, double y1,

    double x2, double y2);

    void draw();

    };

    Rectangle::Rectangle(Drawing *dp, double x1, double y1, double x2, double y2)

    :(5)

    {

    _x1=x1;_y1=y1;_x2=x2;_y2=y2;

    }

    void Rectangle::draw()

    {

    //省略具体实现

    }


    正确答案:(1) virtual (2) DP2::drawline(x1x2y1y2) (3) Drawing (4) _dp->drawLine(x1y1x2y2) (5) Shape(dp)
    (1) virtual (2) DP2::drawline(x1,x2,y1,y2) (3) Drawing (4) _dp->drawLine(x1,y1,x2,y2) (5) Shape(dp) 解析:由函数drawLine()结尾的“=0”易知,空(1)应填virtual。
    空(2)是调用DP2系统的相应方法,可参照DP1的对应函数的函数体,但要注意参数不完全相同,应填DP2::drawline(x1,x2,y1,y2)。
    _dp属性是用来存储Drawing对象的,参照Shape的构造函数可确认这一点,空(3)应填 Drawing*。
    Shape类的drawLine方法是通过调用Drawing对应的方法来实现所需要的功能,因此空(4)应填_dp->drawLine(x1,y1,x2,y2)。
    空(5)显然是基类构造函数,应填Shape(dp)。

  • 第2题:

    已知函数f(x)=(a+1)lnx+ax2+1.

    (Ⅰ)讨论函数f(x)的单调性;

    (Ⅱ)设a≤-2,证明:对任意x2,x2 (0,+∞),|f(x1)-f(x2)|≥4|x1-x2|.


    正确答案:


  • 第3题:

    设配对设计资料的变量值为X1和x2(无差值为0者),则配对设计资料的符号秩和检验是

    A.分别按X1和X2从小到大编秩

    B.把X1和X2所有观察值混合从小到大编秩

    C.把X1和X2所有观察值混合按绝对值从小到大编秩

    D.把X1和X2的差值从小到大编秩

    E.把X1和X2的差值的绝对值从小到大编秩


    正确答案:E

  • 第4题:

    二次型, (1)求f(x1,x2,x3)的矩阵的特征值. (2)设f(x1,x2,x3)的规范形为. 求a


    答案:
    解析:

  • 第5题:

    二元多项式f(x1,x2),如果将x1,x2对换后,有f(x1,x2=f(x2,x1)则称f(x1,x2)为二元对称多项式。下列是二元对称多项式的是( )。
    A.
    B.
    C.
    D.


    答案:C
    解析:
    由定义,互换石。,石:的位置,二元多项式不变,即正确选项为选项C。

  • 第6题:

    设配对资料的变量值为x1和x2,则配对资料的秩和检验()

    • A、分别按x1和x2从小到大编秩
    • B、把x1和x2综合从小到大编秩
    • C、把x1和x2综合按绝对值从小到大编秩
    • D、把x1和x2的差数按绝对值从小到大编秩

    正确答案:D

  • 第7题:

    设配对设计资料的变量值为X1和X2,则配对资料的秩和检验()

    • A、分别按X1和X2从小到大编秩
    • B、把X1和X2综合从小到大编秩
    • C、把X1和X2综合按绝对值从小到大编秩
    • D、把X1和X2的差数从小到大编秩
    • E、把X1和X2的差数的绝对值从小到大编秩

    正确答案:E

  • 第8题:

    设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么()。

    • A、x=x1及x=x2都必不是f(x)的极值点
    • B、只有x=x1是f(x)的极值点
    • C、x=x1及x=x2都有可能是f(x)的极值点
    • D、只有x=x2是f(x)的极值点

    正确答案:C

  • 第9题:

    单选题
    如果一个直线控件在窗体上呈现为一条垂直线,则可以确定的是(  )。
    A

    它的Y1、Y2属性的值相等

    B

    它的X1、X2属性的值相等

    C

    它的X1、Y1属性的值分别与X2、Y2属性的值相等

    D

    它的X1、X2属性的值分别与Y1、Y2属性的值相等


    正确答案: B
    解析:
    直线控件中,X、Y属性可以确定直线控件在窗体上的呈现形式。B项,当直线控件在窗体上呈现为一条垂直线时,表示该控件的X属性取值相同。A项,表示该直线控件是一个水平直线;C项,表示点;D项,表示该直线为对角线直线。

  • 第10题:

    单选题
    被测量Y与输入量X1、X2的估计值分别为y、x1和x2,它们之间的函数关系为y=x1+x2,且X1、X2之间不相关。若X1、X2的标准不确定度分别为:u1=10mg,u2=20mg,合成标准不确定度的有效自由度veff=4,假设被测量Y服从t分布,当包含概率为95%时,测得值的扩展不确定度是(   )。
    A

    45mg

    B

    57mg

    C

    62mg

    D

    71mg


    正确答案: A
    解析:

  • 第11题:

    单选题
    已知被测量Y与输入量X1、X2、X3、X4、X5、的估计值分别为y、x1、x2、x3、x4、x5,它们之间的函数关系为y=x1+x2+x3+x4+x5,若输入量X1、X2、X3、X4、X5服从半宽度相同的均匀分布,且相互独立,则被测量Y在相应变化区间内接近( )分布。
    A

    正态

    B

    均匀

    C

    三角

    D

    反正弦


    正确答案: D
    解析:

  • 第12题:

    问答题
    设函数f(x)在(a,b)内连续,a<x1<x2<…<xn<b,证明:必∃ξ∈(a,b),使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。

    正确答案:
    设f(x)在[x1,xn]上的最大值为M,最小值为m。
    则由题设可知,f(x)在[x1,xn]上连续,则它在[x1,xn]上必有最大值和最小值,则m≤[f(x1)+f(x2)+…+f(xn)]/n≤M。
    由最值介值定理可知,必∃ξ∈[x1,xn]⊂(a,b),使得f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。
    解析: 暂无解析

  • 第13题:

    (18)如果一个直线控件在窗体上呈现为一条垂直线,则可以确定的是

    A)它的Yl、Y2属性的值相等

    B)它的X1、X2属性的值相等

    C)它的X1、Yl属性的值分别与X2, Y2属性的值相等

    D) 它的X1、X2属性的值分别与Y1、Y2属性的值相等


    正确答案:B

  • 第14题:

    设X1,X2,…,Xn是一个样本,样本的观测值分别为x1,x2,…,xn,则样本方差s2的计算公式正确的有( )。


    正确答案:ACD
    解析:

  • 第15题:

    如果从变量y1,y2到x1,x2的线性变换是,则变量x1,x2到变量y1,y2的线性变换是:


    答案:A
    解析:

  • 第16题:

    设有两个参与人x和y,x有两个纯策略x1和x2,y有两个纯策略y1和y2。当y选择y1和y2时,x选择x1得到的支付分别为x11和x12,选择x2得到的支付分别为x1和x22;当x选择x1和x2时,y选择y1得到的支付分别为y11和y21,选择y2得到的支付分别为y12和y22 (1)试给出相应的博弈矩阵。 (2)这种博弈矩阵的表示是唯一的吗?为什么?


    答案:
    解析:
    (1)如表10-10所示。

    (2)不唯一。例如,将表的行与列互换后得到的就是另外一个博弈矩阵。

  • 第17题:

    设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么( )。
    A.x=x1及x=x2都必不是f(x)的极值点
    B.只有x=x1是f(x)的极值点
    C.x=x1及x=x2都有可能是f(x)的极值点
    D.只有x=x2是f(x)的极值点


    答案:C
    解析:
    提示:驻点和导数不存在点都是极值可疑点。

  • 第18题:

    设配对设计资料的变量值为X1和X2,则配对资料的秩和检验()。

    • A、把X1与X2的差数绝对值从小到大编秩
    • B、把X1和X2综合从小到大编秩
    • C、把X1和X2综合按绝对值从小到大编秩
    • D、把X1与X2的差数从小到大编秩

    正确答案:A

  • 第19题:

    已知X1=+0010100,Y1=+0100001,X2=0010100,Y2=0100001,试计算下列各式(设字长为8位)。 (1)[X1+Y1]补=[X1]补+[Y1]补=() (2)[X1-Y2]补=[X1]补+[-Y2]补=() (3)[X2-Y2]补=[X2]补+[-Y2]补=() (4)[X2+Y2]补=[X2]补+[Y2]补=()


    正确答案:00010100+00100001=00110101;00010100+00100001=00110101;11101100+00100001=00001101;11101100+11011111=11001011

  • 第20题:

    单选题
    设f(x)处处连续,且在x=x1处有f'(x1)=0,在x=x2处不可导,那么()。
    A

    x=x1及x=x2都必不是f(x)的极值点

    B

    只有x=x1是f(x)的极值点

    C

    x=x1及x=x2都有可能是f(x)的极值点

    D

    只有x=x2是f(x)的极值点


    正确答案: D
    解析: 暂无解析

  • 第21题:

    单选题
    使用Line控件在窗体上画一条从(0,0)到(600,700)的直线,则其相应属性的值应是(  )。
    A

    X1=0,X2=600,Y1=0,Y2=700

    B

    Y1=0,Y2=600,X1=0,X2=700

    C

    X1=0,X2=0,Y1=600,Y2=700

    D

    Y1=0,Y2=0,X1=600,X2=700


    正确答案: A
    解析:
    X1,Y1,X2,Y2属性是直线的起点、终点坐标。

  • 第22题:

    单选题
    若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点(x1<x2),则至少存在一点ξ,使(  )
    A

    f(b)-f(a)=f′(ξ)(b-a)(a<ξ<b)

    B

    f(b)-f(x1)=f′(ξ)(b-x1)(x1<ξ<b)

    C

    f(x2)-f(x1)=f′(ξ)(x2-x1)(x1<ξ<x2

    D

    f(x2)-f(a)=f′(ξ)(x2-a)(a<ξ<x2


    正确答案: C
    解析:
    考查拉格朗日中值定理的应用。
    值得注意的是,当函数f(x)在[a,b]上连续且在(a,b)内可导时,才可在[a,b]上对函数f(x)应用拉格朗日中值定理。
    由于题中没有说明函数f(x)在[a,b]上连续,因此有可能f(x)在x=a或x=b上没有定义,选项中涉及f(a)、f(b)的均为错误选项。

  • 第23题:

    单选题
    设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是(  )。
    A

    对任意x,f′(x)>0

    B

    对任意x,f′(x)≤0

    C

    函数-f(-x)单调增加

    D

    函数f(-x)单调增加


    正确答案: A
    解析:
    令F(x)=-f(-x),由题知x2>x1,则-x2<-x1,则有f(-x2)<f(-x1),即-f(-x2)>-f(-x1),即F(x2)>F(x1)单调增加,C正确。取f(x)=x3,可排除A项。取f(x)=x,可排除B、D项。