参考答案和解析
正确答案:A
更多“已知数串1,1,2,3,5,8,13,……,从第3个数起每个数都等于它前面相邻的两个数之和,那么,数串中第1999 ”相关问题
  • 第1题:

    有一列数,第1个数是35,第2个数是25,从第3个数开始,每个数都是它前面两个数的平均数。这列数的第15个数的整数部分是( )。

    A.19

    B.24

    C.28

    D.30


    正确答案:C
    第3个数为(35+25)÷2=30,第4个数为(25+30)÷2=27.5,第5个数为(30+27.5)÷2=28.75,第6个数为28.125,此后每个数都小于第5个数,大于第6个数。所以第5个数的整数部分是28。因此,本题正确答案为C。

  • 第2题:

    有一列数:3,7,10,17,27,44…从第三个数起,每个数都等于它前面两个数的和,那么第1998个数除以5的余数是多少?( )

    A. 4

    B. 3

    C. 2

    D. 0


    正确答案:D
    D[解析]我们将这列数每个数分别被5除,观察余数有什么规律。
    这列数每个数分别被5除所得的余数依次是:
    3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,…
    从上述结果可知,余数每20个数出现一周期循环。那么有:1998÷20=99……18,而一周期中第18个数是0,所以第1998个数被5除余数是0;

  • 第3题:

    有一串数:1,3,8,22,60,164,448,……其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍。那么在这串数中,第2000个数除以9的余数是( )。

    A.1
    B.2
    C.3
    D.4

    答案:C
    解析:
    本题属于周期类问题。用数列的前几项除以9取余数,得到1 3 8 4 6 2 7 0 5 1 3 8 ……是一个循环数列,周期T=9。根据周期的公式,2000/9余数为2,因此第2000个数除以9得到的余数是3,所以选择C选项。

  • 第4题:

    有一列数:3,7.10,17,27,44-从第三个数起,每个数都等于它前面两个数的和,那么第1998个数除以5的余数是多少?( )

    A,4

    B.3

    C.2

    D.0


    正确答案:D
    D【解析】我们将这列数每个数分别被5除,观察余数有什么规律。这列数每个数分别被5除所得的余数依次是:3,2,0.2,2,4,1,0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,…… 从上述结果可知,余数每20个数出现一周期循环。那么有:1998÷20一99……18,而一周期中第18个数是0,所以第1998个数被5除余数是0。故答案为D.

  • 第5题:

    一列数,前3个是1,9,9,以后每个都是它前面相邻3个数字之和除以3所得的余数,这列数中的第1999个数是几?(  )

    A.9
    B.0
    C.1
    D.2

    答案:B
    解析:
    将这列数从前至后开始排列:1,9,9,1,1,2,1,1,1,O,2,0,2,1,0,0,1,1,…,这列数除去前面的三个数,其余每13个数为一周期。而(1999-3)÷13=153……7,周期中第7个数是0。所以选B。