A.492bit
B.738bit
C.123bi
D.82bit
第1题:
假设某卷积层的输入和输出特征图大小分别为63*63*16和31*31*64,卷积核大小是5*5,步长为2,那么Padding值为多少?
A.1
B.2
C.3
D.4
第2题:
下列关于CNN的说法不正确的是()
A.经过卷积运算,无法产生与输入相同大小的输出###SXB###B.CNN中的卷积运算,每个输出特性不用查看每个输入特征,而只需查看部分输入特征。###SXB###C.对图像用一个卷积核进行卷积运算,实际上是一个滤波的过程。每个卷积核都是一种特征提取方式,就像是一个筛子,将图像中符合条件的部分筛选出来。###SXB###D.0填充:用额外的“假”像素(通常值为0)填充边缘。这样,在滑动时的卷积核可以允许原始边缘像素位于卷积核的中心,同时延伸到边缘之外的假像素,从而产生与输入相同大小的输出。第3题:
在(3,1,2)结构的卷积编码器中,其约束位数为 。
第4题:
假设某卷积层的输入和输出特征图大小分别为63*63*6和31*31*12,卷积核大小是5*5,步长为2,那么Padding值为多少?
A.4
B.2
C.1
D.3
第5题:
输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为()。
A.95
B.96
C.97
D.98