某二叉树T有n个结点,设按某种顺序对T中的每个结点进行编号,编号值为1、2、…、n,且有如下性质:T中任一结点v,其编号等于左子树上的最小编号减1,而v的右子树的结点中,其最小编号等于 v左子树上的最大编号加1。此二叉树是按( )顺序编号的。A.前序遍历B.中序遍历C.后序遍历D.按层次遍历

题目

某二叉树T有n个结点,设按某种顺序对T中的每个结点进行编号,编号值为1、2、…、n,且有如下性质:T中任一结点v,其编号等于左子树上的最小编号减1,而v的右子树的结点中,其最小编号等于 v左子树上的最大编号加1。此二叉树是按( )顺序编号的。

A.前序遍历

B.中序遍历

C.后序遍历

D.按层次遍历


相似考题
参考答案和解析
正确答案:A
解析:根据节点v的右子树的结点中,其最小编号等于v左子树上的结点的最大编号加1,可以断定是前序遍历。
更多“某二叉树T有n个结点,设按某种顺序对T中的每个结点进行编号,编号值为1、2、…、n,且有如下性质:T中任 ”相关问题
  • 第1题:

    按层次次序将一棵有n个结点的完全二叉树的所有结点从1到n编号,当i≦(n-1)/2时,编号i的结点的右子女的编号是( )。

    A)2i-1

    B)2i

    C)2i+1

    D)不确定


    正确答案:C
    完全二叉树中除最下面一层外,各层都被结点充满了,每一层结点个数恰是上一层结点个数的2倍。因此,从一个结点的编号就可以推知它的双亲及左、右子女结点的编号。当i≤ n/2时,结点i的左子女是结点2i,否则结点i没有左子女。当i≤(n-1)/2时,结点i的右子女是结点2i+1,否则结点i没有右子女。

  • 第2题:

    某二叉树T有n个节点,设按某种顺序对T中的每个节点进行编号,编号值为1,2,… n,且有如下性质:T中任一节点v,其编号等于左子树上的最小编号减1,而v的右子树的节点中,其最小编号等于v左子树上的节点的最大编号加1。此二叉树是按( )顺序编号的。

    A.前序遍历

    B.中序遍历

    C.后序遍历

    D.按层次遍历


    正确答案:A
    解析:根据节点v的右子树的节点中,其最小编号等于v左子树上的节点的最大编号加1,可以断定是前序遍历。

  • 第3题:

    按层次次序将一棵有n个结点的完全二叉树的所有结点从1到n编号,当i≤n/2时,编号i的结点的左子女的编号是________。

    A.2i-1

    B.2i

    C.2i+1

    D.不确定


    正确答案:B
    解析:完全二叉树中除最下面一层外,各层都被结点充满了,每一层结点个数恰是上一层结点个数的2倍。因此,从一个结点的编号就可以推知它的双亲及左、右子女结点的编号。当i ≤ n/2时,结点i的左子女是结点2i,否则结点i没有左子女。当i ≤ (n-1)/2时,结点i的右子女是结点2i+1,否则结点i没有右子女。

  • 第4题:

    一个深度为I(I≥1)的二叉树有n个结点,从1-n对结点自上而下,自左至右编号,这样的树( )。

    A.是完全二叉树

    B.是满二叉树

    C.结点数最多2i1个

    D.父结点编号是子结点编号的1/2


    正确答案:A
    解析:这是完全二叉树的定义,应该注意满二叉树与完全二叉树的区别,满二叉树是完全二叉树,但完全二叉树却不一定为满二叉树。

  • 第5题:

    设F是T1、T2和T3三棵树组成的森林,与F对应的二叉树为B,已知T1、T2和T3的结点个数分别为n1, n2和n3,则二叉树B的根结点左子树和右子树中结点的个数分别为 【】 和 【】


    正确答案:

    n11    n2+n3


    树与二叉树的转换;将森林中每棵树的根结点作为二叉树的根结点,每个结点中的从左数第一个孩子是二叉树中的左孩子,该孩子的所有兄弟都依次为该结点的右孩子 ,如此例推

  • 第6题:

    按层次次序将一棵有n-个结点的完全二叉树的所有结点从1~n编号,当i≤n/2时,编号为i的结点的左子树的编号是( )。

    A.2i-1

    B.2i

    C.2i+1

    D.不确定


    正确答案:B
    B。【解析】完全二叉树中除最下面一层外,各层都被结点充满了,每一层结点个数恰是上一层结点个数的2倍。因此,从一个结点的编号就可推知它的双亲及左、右子树结点的编号。当i≤n/2时,编号为i的结点的左子树的编号是2i,否则结点i没有左子树。当i≤(n-1)/2时,编号为i的结点的右子树的编号是2i+1,否则结点i没有右子树。当i≠1时,编号为i的结点的双亲是结点i/2。

  • 第7题:

    对二叉树中的结点如下编号:树根结点编号为1,根的左孩子结点编号为2、右孩子结点编号为3,依此类推,对于编号为i的结点,其左孩子编号为2i、右孩子编号为2i+1。例如,下图所示二叉树中有6个结点,结点a、b、c、d、e、f的编号分别为1、2、3、5、7、11。那么,当结点数为n(n>0)的( )时,其最后一个结点编号为2i-1

    A.二叉树为满二叉树(即每层的结点数达到最大值)B.二叉树中每个内部结点都有两个孩子C.二叉树中每个内部结点都只有左孩子D.二叉树中每个内部结点都只有右孩子


    正确答案:C

  • 第8题:

    在一棵完全二叉树的顺序存储方式中,若编号为t的结点有右孩子,则此结点右孩子的编号为( )

    A.2t

    B.2t-1

    C.2t+1

    D.t/2


    正确答案:C

  • 第9题:

    按层次次序将一棵有n个结点的完全二叉树的所有结点从1到n编号,当i≤(n-1)/2时,结点i的右子女的结点编号为()。


    正确答案:2i+1

  • 第10题:

    设F是由T1、T2和T3三棵树组成的森林,与F对应的二叉树为B,T1、T2和T3的结点数分别为N1、N2和N3,则二叉树B的根结点的左子树的结点数为()

    • A、N1-1
    • B、N2-1
    • C、N2+N3
    • D、N1+N3

    正确答案:A

  • 第11题:

    一棵深度为H的满k叉树有如下性质:第H层上的结点都是叶子结点,其余各层上每个结点都有k棵非空子树,如果按层次自上至下,从左到右顺序从1开始对全部结点编号,回答下列问题:编号为n的结点有右兄弟的条件是什么?其右兄弟的编号是多少?


    正确答案:编号为n的结点有右兄弟的条件是(n-1)%m≠0。其右兄弟的编号是n+1。

  • 第12题:

    单选题
    设F是由T1、T2和T3三棵树组成的森林,与F对应的二叉树为B,T1、T2和T3的结点数分别为N1、N2和N3,则二叉树B的根结点的左子树的结点数为()
    A

    N1-1

    B

    N2-1

    C

    N2+N3

    D

    N1+N3


    正确答案: D
    解析: 暂无解析

  • 第13题:

    设F是由T1、T2和T3三棵树组成的森林,与F对应的二叉树为B,已知T1、T2和T3的结点个数分别为n1、n2和n3,则二叉树B的根结点左子树个数为( )。

    A)1

    B)n1-1

    C)n3

    D)n2+n3


    正确答案:B
    由森林到二叉树的转换可知,森林F中第一棵树的根转换得到的二叉树的根,T1其他结点均在B的根结点的左子树中,而T2、T3的结点均在右子树中。所以左子树个数是n1-1。 

  • 第14题:

    按层次次序将一棵有n个结点的完全二叉树的所有结点从1到n编号,当i≤n/2时,编号为i的结点的左子女的编号为

    A.2i-1

    B.2i

    C.2i+l

    D.不确定


    正确答案:B
    解析:根据二叉树的性质可以知道,如果对一棵有n个结点的完全二叉树的结点按层序编号,则对任意结点i(1≤i≤n)有:如果i=1,则结点i是二叉树的根,无双亲;如果i>l,则双亲PARENT(i)是结点V2。如果2i>n,则结点i无左孩子;否则其左孩子结点是2i。如果2i+1>n,则结点i无右孩子;否则其右孩子是结点2i+l。本题答案为B)。

  • 第15题:

    某二叉树T有n个结点,设按某种顺序对T中的每个结点进行编号,编号值为1,2…,n,且有如下性质:T中任一结点v,其编号等于左子树上的最小编号减1,而v的右子树的结点中,其最小编号等于v左子树上的结点的最大编号加1。此二叉树是按( )顺序编号的。

    A.前序遍历

    B.中序遍历

    C.后序遍历

    D.按层次遍历


    正确答案:A
    解析:根据结点v的右子树的结点中,其最小编号等于v左子树上的结点的最大编号加 1,可以断定是前序遍历。

  • 第16题:

    具有n个结点的完全二叉树,若按自上而下、从左到右依次给结点编号,则编号最小的叶结点的序号是( )。A.[n/2] B.[n+1]C.[n/2]+1 D.[n/2]-1


    正确答案:C
    完全二叉树编号最小的叶节点即为最后一层的第一个节点。[n/2]为倒数第二层的最后一个节点,因此结果为[n/2]+1.

  • 第17题:

    一个高度为h的满二叉树的结点总数为2h-1,其每一层结点个数都达到最大值。从根结点开始顺序编号,每一层都从左到右依次编号,直到最后的叶子结点层为止。即根结点编号为1,其左、右孩子结点编号分别为2和3,再下一层从左到右的编号为4、5、6、7,依此类推,那么,在一棵满二叉树中,对于编号为m和n的两个结点,若m=2n,则结点(40)。

    A.m是n的左孩子

    B.m是n的右孩子

    C.n是m的左孩子

    D.n是m的右孩子


    正确答案:A
    在满二叉树中,有两个编号为m和n的节点,其中m=2n,说明m是m的左孩子节点,这就好比编号为1与编号为2的节点关系。

  • 第18题:

    设对一个n个结点的完全二叉树按序的编号为1,2,3…n,若某结点I≤(n-1)/2,则结点 I的右子女为( )。

    A.2i-1

    B.2i

    C.2i+1

    D.I+1


    正确答案:C
    解析:在完全二叉树编号中,若结点有左孩子,则该孩子的编号必为它编号的两倍,相应地若它有右孩子,则其编号比左孩子大1,所以结点I的右子女为2i+1。

  • 第19题:

    按层次次序将一棵有n个结点的完全二叉树的所有结点从1到n编号,当i≤(n-1)/2时,编号i的结点的右子女的编号是( )。

    A)2i-1

    B)2i

    C)2i 1

    D)不确定


    正确答案:C

  • 第20题:

    一个高度为h的满二叉树的结点总数为2(h次方)-1其每一层结点个数都达到最大值。从根结点开始顺序编号,即根结点编号为1,其左、右孩子结点编号分别为2和3,再下一层从左到右的编号为4、5、6、7,依次类推,每一层都从左到右依次编号,直到最后的叶子结点层为止。那么,在一颗满二叉树中,对于编号m和n的两个结点,若m=2n+1,则( )。

    A.m是n的左孩子
    B.m是n的右孩子
    C.n是m的左孩子
    D.n是m的右孩子

    答案:B
    解析:
    本题考查数据结构基础知识。
    用验证的方法求解,以高度为3的满二叉树(如下图所示)为例进行说明。

    若m=2n+1,则结点m是n的右孩子结点。

  • 第21题:

    一棵深度为H的满k叉树有如下性质:第H层上的结点都是叶子结点,其余各层上每个结点都有k棵非空子树,如果按层次自上至下,从左到右顺序从1开始对全部结点编号,回答下列问题:编号为n的结点的第i个孩子结点如果存在,编号是多少?


    正确答案:编号为n的结点的第i个孩子结点如果存在,编号是(n-1)*m+i+1。

  • 第22题:

    一棵深度为H的满k叉树有如下性质:第H层上的结点都是叶子结点,其余各层上每个结点都有k棵非空子树,如果按层次自上至下,从左到右顺序从1开始对全部结点编号,回答下列问题:编号为n的结点的父结点如果存在,编号是多少?


    正确答案:编号为n的结点的父结点如果存在,编号是((n-2)/m)+1

  • 第23题:

    填空题
    按层次次序将一棵有n个结点的完全二叉树的所有结点从1到n编号,当i≤(n-1)/2时,结点i的右子女的结点编号为()。

    正确答案: 2i+1
    解析: 暂无解析