系统仿真过程可以表示为 E=f(X,Y) 其中E、X、Y分别代表A.效益、可控因素、不可控因素B.不可控因素、效益、可控因素C.可控因素、效益、不可控因素D.不可控因素、可控因素

题目

系统仿真过程可以表示为 E=f(X,Y) 其中E、X、Y分别代表

A.效益、可控因素、不可控因素

B.不可控因素、效益、可控因素

C.可控因素、效益、不可控因素

D.不可控因素、可控因素


相似考题
更多“系统仿真过程可以表示为 E=f(X,Y) 其中E、X、Y分别代表”相关问题
  • 第1题:

    设关系模式R,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指()。

    设关系模式R<U,F>,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指()。

    A.若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵

    B.若X→Y,X→Z,则X→YZ为F所蕴涵

    C.若X→Y,WY→Z,则XW→Z为F所蕴涵

    D.若X→Y为F所蕴涵,且Z?U,则XZ→YZ为F所蕴涵


    正确答案:C

  • 第2题:


    A.f(-x,y)=f(x,y),f(x,-y)=-f(x,y)
    B.f(-x,y)=f(x,y),f(x,-y)=f(x,y)
    C.f(-x,y)=-f(x,y),f(x,-y)=-f(x,y)
    D.f(-x,y)=-f(x,y),f(x,-y)=f(x,y)

    答案:B
    解析:
    要求f(x,y)关于x和y都是偶函数。

  • 第3题:

    设f(x),f'(x)为已知的连续函数,则微分方程y'十f'(x)y=f(x)f'(x)的通解是:
    A. y=f(x)+ce-f(x) B. y= f(x)ef(x) -ef(x) +c
    C. y=f(x)-1+ce-f(x) D. y=f(x)-1+cef(x)


    答案:C
    解析:
    提示:对关于y、y'的一阶线性方程求通解。其中p(x)=f'(x)、Q(x) =f(x)*f'(x) 利

  • 第4题:

    设关系模式R<U,F>,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指( )。

    A.若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵
    B.若X→Y,X→Z,则X→YZ为F所蕴涵
    C.若X→Y,WY→Z,则XW→Z为F所蕴涵
    D.若X→Y为F所蕴涵,且Z?U,则XZ→YZ为F所蕴涵

    答案:C
    解析:
    本题考查关系数据库基础知识。从已知的一些函数依赖,可以推导出另外一些函数依赖,这就需要一系列推理规则。函数依赖的推理规则最早出现在1974年W.W.Armstrong的论文里,这些规则常被称作“Armstrong公理”。选项A“若X→Y,Y→Z为F所蕴涵,则H为F所蕴涵”符合Armstrong公理系统的传递率。选项B“若X→Y,X→Z,则X→YZ为F所蕴涵”符合Armstrong公理系统的合并规则。选项C“若X→Y,WY→Z,则XW→Z为F所蕴涵”符合Armstrong公理系统的伪传递率。选项D“若X→Y为F所蕴涵,且K?U,则XZ→YZ为F所蕴涵”符合Armstrong公理系统的增广率。

  • 第5题:

    给定关系模式R,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指( )。

    A.若X→Y,X→Z,则X→YZ为F所蕴涵
    B.若X→Y,WY→Z,则XW→Z为F所蕴涵
    C.若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵
    D.若Ⅹ→Y为F所蕴涵,且Z U,则XZ→YZ为F所蕴涵

    答案:B
    解析:
    从已知的一些函数依赖,可以推导出另外一些函数依赖,这就需要一系列推理规则。函数依赖的推理规则最早出现在1974年W.W.Armstrong的论文里,这些规则常被称作"Armstrong公理".合并规则:若X→Y,X→Z同时在R上成立,则X→YZ在R上也成立。分解规则:若X→W在R上成立,且属性集Z包含于W,则X→Z在R上也成立。伪传递规则:若X→Y在R上成立,且WY→Z,则XW→Z。

  • 第6题:

    用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=φ(x),则f(x)=0的根是()。

    • A、y=φ(x)与x轴交点的横坐标
    • B、y=x与y=φ(x)交点的横坐标
    • C、y=x与x轴的交点的横坐标
    • D、y=x与y=φ(x)的交点

    正确答案:B

  • 第7题:

    设二维随机变量(X,Y)在区域D上服从均匀分布,其中D://0≤x≤2,0≤y≤2。记(X,Y)的概率密度为f(x,y),则f(1,1)=()


    正确答案:0.25

  • 第8题:

    正弦波y(t)的幅值被时域信号x(t)调制,若它们相应的频域描述分别为Y(f),X(f),那么调制后信号的频域描述为()。

    • A、X(f)×Y(f)
    • B、X(f)+Y(f)
    • C、X(f)*Y(f)
    • D、X(f)–Y(f)

    正确答案:C

  • 第9题:

    单选题
    设z=f(x2+y2),其中f具有二阶导数,则等于().
    A

    2f’(x2+y2)

    B

    4x2f(x2+y2)

    C

    2’(x2+y2)+4x2f(x2+y2)

    D

    2xf(x2+y2)


    正确答案: D
    解析: 暂无解析

  • 第10题:

    单选题
    设z=f(xy,x/y)+g(y/x),其中f、g均可微,则∂z/∂x=(  )。
    A

    yf1′+f2′/y-yg′/x2

    B

    yf1′-f2′/y-yg′/x2

    C

    yf1′-f2′/y+yg′/x2

    D

    yf1′+f2′/y+yg′/x2


    正确答案: A
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,g′为函数g对x的导数。则∂z/∂x=∂f(xy,x/y)/∂x+∂g(y/x)/∂x=f1′y+f2′·(1/y)+g′·(-y/x2)=f1′y+f2′/y-yg′/x2

  • 第11题:

    单选题
    设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX|Y(x|y)为(  )。
    A

    fX(x)

    B

    fY(y)

    C

    fX(x)fY(y)

    D

    fX(x)/fY(y)


    正确答案: D
    解析:
    因为(X,Y)服从二维正态分布,且相关系数ρ=0,故X,Y相互独立,故fX|Y(x|y)=f(x,y)/fY(y)=fX(x)fY(y)/fY(y)=fX(x)。

  • 第12题:

    单选题
    设f(x,y)=ax+by,其中a,b为常数,则f[xy,f(x,y)]=(  )。
    A

    xy+bx+b2y

    B

    bxy+ax+by

    C

    bxy+ax-by

    D

    axy+abx+b2y


    正确答案: C
    解析:
    由f(x,y)=ax+by知,f[xy,f(x,y)]=axy+b(ax+by)=axy+abx+b2y。

  • 第13题:

    下列( )项是在D={(x,y)|x2+y2≤1,x≥0,y≥0)上的连续函数f(x,y),且f(x,y)=3(x+y)+16xy。

    A.f(x,y)=3(x+y)+32xy
    B.f(x,y)=3(x+y)-32xy
    C.f(x,y)=3(x+y)-16xy
    D.f(x,y)=3(x+y)+16xy

    答案:B
    解析:
    解本题的关键在于搞清二重积分



    是表示一个常数,对f(x,y)=3(x+y)+



    利用极坐标进行二重积分计算

  • 第14题:

    设随机变量(X,Y)的分布函数为F(x,y),用它表示概率P(-X
    A.1-F(-a,y)
    B.1-F(-a,y-0)
    C.F(+∞,y-0)-F(-a,y-0)
    D.F(+∞,y)-F(-a,y)

    答案:C
    解析:

  • 第15题:

    给定关系模式 R;其中 U 为属性集,F 是 U 上的一组函数依赖,那么 Armstroog 公理系统的增广律是指( )。

    A.若 X→Y,X→Z,则 X→YZ 为 F 所蕴涵
    B.若 X→Y,WY→Z,则 XW→Z 为 F 所蕴涵
    C.若 X→Y,Y→Z 为 F 所蕴涵,则 X→Z 为 F 所蕴涵
    D.若 X→Y,为 F 所蕴涵,且 Z?U,则入 XZ→YZ 为 F 所蕴涵

    答案:D
    解析:
    从已知的一些函数依赖,可以推导出另外一些函数依赖,这就需要一系列推理规则。函数依赖的推理规则最早出现在1974年W.W.Armstrong 的论文里,这些规则常被称作“Armstrong 公理”设U 是关系模式R 的属性集,F 是R 上成立的只涉及U 中属性的函数依赖集。函数依赖的推理规则有以下三条:自反律:若属性集Y 包含于属性集X,属性集X 包含于U,则X→Y 在R 上成立。(此处X→Y是平凡函数依赖)增广律:若X→Y 在R 上成立,且属性集Z 包含于属性集U,则XZ→YZ 在R 上成立。传递律:若X→Y 和 Y→Z在R 上成立,则X →Z 在R 上成立。其他的所有函数依赖的推理规则可以使用这三条规则推导出。

  • 第16题:

    设X~f(x)=对X进行独立重复观察4次,用Y表示观察值大于的次数,求E(Y^2).


    答案:
    解析:

  • 第17题:

    用f(x,y)表示图像亮度,i(x,y)表示入射分量,r(x,y)表示反射分量,则对一幅图像可以建模为f(x,y)=i(x,y)·r(x,y)。该模型是以下哪种图像增强方法的基础()。

    • A、对比度线性展宽方法
    • B、同态滤波方法
    • C、线性动态范围调整方法
    • D、非线性动态范围调整方法

    正确答案:B

  • 第18题:

    判断下列关系模式可以达到的范式级别: 1)R(X,Y,Z)F={XY→Z} 2)R(X,Y,Z)F={Y→Z,XZ→Y} 3)R(X,Y,Z)F={Y→Z,Y→X,X→YZ} 4)R(X,Y,Z)F={X→Y,X→Z}


    正确答案: 1)R(X,Y,Z)F={XY→Z,Y→Z 达到1NF
    2)R(X,Y,Z)F={Y→Z,XZ→Y}达到3CNF
    3)R(X,Y,Z)F={Y→Z,X→YZ}达到2NF
    4)R(X,Y,Z)F={X→Y,X→Z} 达到BCNF

  • 第19题:

    设z=f(x2+y2),其中f具有二阶导数,则等于().

    • A、2f’(x2+y2)
    • B、4x2f"(x2+y2)
    • C、2’(x2+y2)+4x2f"(x2+y2)
    • D、2xf"(x2+y2)

    正确答案:C

  • 第20题:

    填空题
    设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=____。

    正确答案: -1/7
    解析:
    由方程y=f(x2+y2)+f(x+y)。两边对x求导得yx′=f′(x2+y2)(2x+2y·yx′)+f′(x+y)(1+yx′)。
    又y(0)=2,f′(2)=1/2,f′(4)=1,,故y′|x0=f′(4)·4y′|x0+f′(2)(1+y′|x0),y′|x0=4y′|x0+(1+y′|x0)/2,解得y′|x0=-1/7。

  • 第21题:

    填空题
    设z=f(xy,x/y)+g(y/x),其中f、g均可微,则∂z/∂x=____。

    正确答案: yf1′+f2′/y-yg′/x2
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,g′为函数g对x的导数。则∂z/∂x=∂f(xy,x/y)/∂x+∂g(y/x)/∂x=f1′y+f2′·(1/y)+g′·(-y/x2)=f1′y+f2′/y-yg′/x2

  • 第22题:

    填空题
    设f(x,y)=ax+by,其中a,b为常数,则f[xy,f(x,y)]=____。

    正确答案: axy+abx+b2y
    解析:
    由f(x,y)=ax+by知,f[xy,f(x,y)]=axy+b(ax+by)=axy+abx+b2y。

  • 第23题:

    单选题
    用f(x,y)表示图像亮度,i(x,y)表示入射分量,r(x,y)表示反射分量,则对一幅图像可以建模为f(x,y)=i(x,y)·r(x,y)。该模型是以下哪种图像增强方法的基础()。
    A

    对比度线性展宽方法

    B

    同态滤波方法

    C

    线性动态范围调整方法

    D

    非线性动态范围调整方法


    正确答案: A
    解析: 暂无解析

  • 第24题:

    单选题
    正弦波y(t)的幅值被时域信号x(t)调制,若它们相应的频域描述分别为Y(f),X(f),那么调制后信号的频域描述为()。
    A

    X(f)×Y(f)

    B

    X(f)+Y(f)

    C

    X(f)*Y(f)

    D

    X(f)–Y(f)


    正确答案: B
    解析: 暂无解析