*部分背包问题可有贪心法求解:计算Pi/Wi
数据结构:
w[i]:第i个背包的重量;
p[i]:第i个背包的价值;
1.0-1背包: 每个背包只能使用一次或有限次(可转化为一次):
A.求最多可放入的重量。
NOIP2001 装箱问题
有一个箱子容量为v(正整数,o≤v≤20000),同时有n个物品(o≤n≤30),每个物品有一个体积 (正整数)。要求从 n 个物品中,任取若千个装入箱内,使箱子的剩余空间为最小。
l 搜索方法
procedure search(k,v:integer); {搜索第k个物品,剩余空间为v}
var i,j:integer;
begin
if v<best then best:=v;
if v-(s[n]-s[k-1])>=best then exit; {s[n]为前n个物品的重量和}
if k<=n then begin
if v>w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;
l DP
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
实现:将最优化问题转化为判定性问题
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v) 边界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
优化:当前状态只与前一阶段状态有关,可降至一维。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;
第1题:
考虑一个背包问题,共有n=5个物品,背包容量为W=10,物品的重量和价值分别为:w={2,2,6,5,4},v={6,3,5,4,6},求背包问题的最大装包价值。若此为0-1背包问题,分析该问题具有最优子结构,定义递归式为
其中c(i,j)表示i个物品、容量为j的0-1背包问题的最大装包价值,最终要求解c(n,W)。 采用自底向上的动态规划方法求解,得到最大装包价值为(62),算法的时间复杂度为(63)。 若此为部分背包问题,首先采用归并排序算法,根据物品的单位重量价值从大到小排序,然后依次将物品放入背包直至所有物品放入背包中或者背包再无容量,则得到的最大装包价值为(64),算法的时间复杂度为(65)。
A.11
B.14
C.15
D.16.67
第2题:
OPT(i,w): 从1-i种物品中选择,放入容量为w的背包时的最大价值。这是()问题动态规划算法的递推函数。
A.0/1背包
B.恰好装满的0/1背包
C.完全0/1背包
D.多重0/1背包
第3题:
0-1背包问题:给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i。用动态规划法编写算法和程序实现0-1背包问题。并给出如下测试用例的求解过程:有5件物品,重量分别为(3,2,1,4,5),价值分别为(25,20,15,40,50),背包容量w=6。
第4题:
在第4题中,从问题本质看,任务的加工时间相当于0-1背包问题中的下述输入参数:
A.既是物品i的价值,也是它的重量
B.仅代表物品i的价值
C.仅代表物品i的重量
D.物品i单位重量的价值
第5题:
OPT(i,w): 从1-i个物品中选择,放入容量为w的背包时的最大价值。这是()问题动态规划算法的递推函数。
A.0/1背包
B.恰好装满的0/1背包
C.完全0/1背包
D.多重0/1背包