参考答案和解析
答案:C
解析:
第三次数学危机为数学罗素悖论的产生。第三次数学危机引发了关于数学逻辑基础可靠性的问题,导致无矛盾的集合论公理系统的产生。在这场危机中集合论得到较快的发展,数学基础的进步更快,数理逻辑也更加成熟。到现在,从整体来看,第三次数学危机还没有解决到令人满意的程度。
更多“数学发展史上曾经历过三次危机,触发第三次数学危机的事件是( )。”相关问题
  • 第1题:

    数学史上一共发生了几次危机( )


    A.1

    B.2

    C.3

    D.4

    答案:C
    解析:
    一共发生了三次,分别是:无理数的发现,无穷小是零吗,罗素悖论的产生。

  • 第2题:

    数学史上一共发生了几次危机 ( )

    A、1
    B、2
    C、3
    D、4

    答案:C
    解析:
    一共发生了三次,分别是:无理数的发现,无穷小是零吗,罗素悖论的产生。

  • 第3题:

    引发第三次数学危机的是什么()?

    • A、无理数的出现
    • B、微积分的出现
    • C、罗素悖论
    • D、直觉主义逻辑

    正确答案:C

  • 第4题:

    第三次数学危机产生于十九世纪末和二十世纪初,当时正是数学空前兴旺发达的时期。首先是逻辑的()促使了数理逻辑这门学科诞生,其中,十九世纪七十年代康托尔创立的()是产生危机的直接来源。


    正确答案:数学化;集合论

  • 第5题:

    历史上有()数学危机。

    • A、一次
    • B、两次
    • C、三次
    • D、四次

    正确答案:C

  • 第6题:

    在数学研究史上,比较一致地认为从古至今,数学发展经历了()次大危机。

    • A、三
    • B、四
    • C、五
    • D、六

    正确答案:A

  • 第7题:

    希帕索斯悖论引发的是()数学危机

    • A、第二次
    • B、第四次
    • C、第一次
    • D、第三次

    正确答案:C

  • 第8题:

    问答题
    三次数学危机分别发生在何时?主要内容是什么?是如何解决的?

    正确答案: 第一次数学危机:公元前六世纪,毕达哥拉斯悖论:无理数的发现。欧多克索斯的解决方式,是借助几何方法,避免直接出现无理数;无理数的使用在几何中是允许的,合法的,在代数中就是非法的,不合逻辑的。第二次数学危机:十七世纪,贝克莱悖论:“无穷小量究竟是否为0”的问题:无穷小量在当时实际应用而言,它必须既是0,又不是0。从形式逻辑而言,这无疑是一个矛盾。极限理论、实数理论和集合论三大理论的完善,微积分学坚实牢固基础的建立。第三次数学危机:十九世纪下半叶,罗素悖论:罗素构造了一个集合S:S由一切不是自身元素的集合所组成,康托尔集合论是有漏洞的。公理化集合系统的建立,成功排除了集合论中出现的悖论。
    解析: 暂无解析

  • 第9题:

    问答题
    论述数学史上的三次数学危机。

    正确答案: 第一次数学危机─—无理数的发现(第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示。反之,数却可以由几何量表示出来。整数的尊祟地位受到挑战,古希腊的数学观点受到极大的冲击。于是,几何学开始在希腊数学中占有非凡地位。同时也反映出,直觉和经验不一定靠得住,而推理证实才是可靠的。从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系。)
    第二次数学危机——无穷小是零吗(直到19世纪,柯西具体而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决,第二次数学危机的解决使微积分更完善。)
    第三次数学危机——罗素悖论的产生(引发了关于数学逻辑基础可靠性的问题,导致无矛盾的集合论公理系统(即所谓ZF公理系统)的产生。在这场危机中集合论得到较快的发展,数学基础的进步更快,数理逻辑也更加成熟。)
    解析: 暂无解析

  • 第10题:

    单选题
    第三次数学危机,是由谁引发的()
    A

    傅里叶

    B

    庞加莱

    C

    弗雷格

    D

    罗素


    正确答案: A
    解析: 暂无解析

  • 第11题:

    单选题
    历史上有()数学危机。
    A

    一次

    B

    两次

    C

    三次

    D

    四次


    正确答案: C
    解析: 暂无解析

  • 第12题:

    判断题
    第三次数学危机的出现主要是因为微积分的诞生。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第13题:

    数学发展史上曾经发生过三次危机,触发第三次危机的事件是(  )。


    A.无理数的发现
    B.微积分的创立
    C.罗素悖论
    D.数学命题的机器证明

    答案:C
    解析:
    本题主要考查对数学历史的了解。

    第三次数学危机为罗素悖论的产生,其引发了关于数学逻辑基础可靠性的问题,导致无矛盾的集合论公理系统的产生。

  • 第14题:

    第一次数学危机,是数学史上的一次重要事件,发生于大约公元前400年左右的古希腊时期,自()的发现起,到公元前370年左右,以()的定义出现为结束标志。这次危机的出现冲击了一直以来在西方数学界占据主导地位的毕达哥拉斯学派。
    ;无理数

  • 第15题:

    论述数学的三次危机对数学发展的作用。


    正确答案: 第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。
    第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。
    第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。
    由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。

  • 第16题:

    第三次数学危机的出现主要是因为微积分的诞生。


    正确答案:错误

  • 第17题:

    第三次数学危机,是由谁引发的()

    • A、傅里叶
    • B、庞加莱
    • C、弗雷格
    • D、罗素

    正确答案:D

  • 第18题:

    论述数学史上的三次数学危机。


    正确答案: 第一次数学危机─—无理数的发现(第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示。反之,数却可以由几何量表示出来。整数的尊祟地位受到挑战,古希腊的数学观点受到极大的冲击。于是,几何学开始在希腊数学中占有非凡地位。同时也反映出,直觉和经验不一定靠得住,而推理证实才是可靠的。从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系。)
    第二次数学危机——无穷小是零吗(直到19世纪,柯西具体而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决,第二次数学危机的解决使微积分更完善。)
    第三次数学危机——罗素悖论的产生(引发了关于数学逻辑基础可靠性的问题,导致无矛盾的集合论公理系统(即所谓ZF公理系统)的产生。在这场危机中集合论得到较快的发展,数学基础的进步更快,数理逻辑也更加成熟。)

  • 第19题:

    三次数学危机分别发生在何时?主要内容是什么?是如何解决的?


    正确答案: 第一次数学危机:公元前六世纪,毕达哥拉斯悖论:无理数的发现。欧多克索斯的解决方式,是借助几何方法,避免直接出现无理数;无理数的使用在几何中是允许的,合法的,在代数中就是非法的,不合逻辑的。第二次数学危机:十七世纪,贝克莱悖论:“无穷小量究竟是否为0”的问题:无穷小量在当时实际应用而言,它必须既是0,又不是0。从形式逻辑而言,这无疑是一个矛盾。极限理论、实数理论和集合论三大理论的完善,微积分学坚实牢固基础的建立。第三次数学危机:十九世纪下半叶,罗素悖论:罗素构造了一个集合S:S由一切不是自身元素的集合所组成,康托尔集合论是有漏洞的。公理化集合系统的建立,成功排除了集合论中出现的悖论。

  • 第20题:

    填空题
    第三次数学危机产生于十九世纪末和二十世纪初,当时正是数学空前兴旺发达的时期。首先是逻辑的()促使了数理逻辑这门学科诞生,其中,十九世纪七十年代康托尔创立的()是产生危机的直接来源。

    正确答案: 数学化,集合论
    解析: 暂无解析

  • 第21题:

    单选题
    引发第三次数学危机的是什么()?
    A

    无理数的出现

    B

    微积分的出现

    C

    罗素悖论

    D

    直觉主义逻辑


    正确答案: D
    解析: 暂无解析

  • 第22题:

    问答题
    论述数学的三次危机对数学发展的作用。

    正确答案: 第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。
    第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。
    第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。
    由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。
    解析: 暂无解析

  • 第23题:

    单选题
    在数学研究史上,比较一致地认为从古至今,数学发展经历了()次大危机。
    A

    B

    C

    D


    正确答案: A
    解析: 暂无解析