更多“光滑函数f(χ)的图象如图所示,下列关系式正确的是( )。 ”相关问题
  • 第1题:

    已知函数f(x)=a2+k的图象经过点(1,7),且其反函数f-1(x)的图像经过点(4,0),则函数f(x)的表达式是 ( )

    A.f(x)=4x+3

    B.f(x)=2x+5

    C.f(x)=5x+2

    D.f(x)=3x+5


    正确答案:A

  • 第2题:


    A.常数k<-1
    B.函数f(x)在定义域范围内,y随着x的增大而减小
    C.若点C(-1,m),点B(2,n),在函数f(x)的图象上,则m<n
    D.函数f(x)图象对称轴的直线方程是y=x

    答案:C
    解析:
    由图象可知常数k>0,A项错误;当x>0时,y随着x的增大而减小,当x<0时,y随着x的增大而减小,B选项说法不严谨,错误;由反比例函数的公式可得,m=-k<0,



    m<n,C正确;函数f(x)图象对称轴有两条,y=x和y=-x,D错误。

  • 第3题:

    下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4).
    (1)求出图象与戈轴的交点A,B的坐标;



    存在,请说明理由;
    ° (3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.





    答案:
    解析:
    解:(1)由二次函数Y=(x+m)2+k的顶点坐标为M(1,-4)可知,m=-1,k=-4.则二次函数Y=(x-1)2-4与x轴的交点为A(-1,0),8(3,0).




    (3)如图,当直线Y=x+b经过A(-1,0)时-1+b=0,
    可得b=1,又因为b<1,
    故可知Y=x+b在Y=x+1的下方,
    当直线Y=x+b经过点B(3,0)时,3+b=0,则b=-3,
    由图可知,b的取值范围为-3<b<1时,
    直线Y=x+b(b<1)与此图象有两个公共点.


  • 第4题:

    定义[a,b,c]为函数y=ax2+bc+c的特征数,下面给出特征数为[ 2m ,1-m,-1-m]的函数的一些结论:
    ①当m=-3时,函数图象的顶点坐标是{1/3,-(8/3)};
    ②当m>0时,函数图象截石轴所得的线段长度大于3/2;
    ③当m<0时,函数在x>1/4时,y随x的增大而减小;
    ④当m≠0时,函数图象经过同一个点。
    其中正确的结论有()。

    A.②③④
    B.①②④
    C.③④
    D.②④

    答案:D
    解析:
    特征数[2m,1-m,-l-m]的函数为y=2mx2+(1-m)x+(-1-m)。①当m=-3时,y=-6x2+4x+

  • 第5题:

    已知象函数F(s)求解原函数f(t)的过程称为拉氏变换。( )


    答案:错
    解析:

  • 第6题:

    设χ=α是代数方程f(χ)=0的根,则下列结论不正确的是( )。

    A、χ-α是f(χ)的因式
    B、χ-α整除f(χ)
    C、(α,0)是函数y=f(χ)的图象与χ轴的交点
    D、f′(α)=O

    答案:D
    解析:
    由于x=α是代数方程f(x)=0的根,故有f(α)=0,x-α是f(x)的因式,x-α整除f(x),(a,0)是函数y=f(x)的图像与x轴的交点,但是不一定有f’(α)=0,比如f(x)=x-2。

  • 第7题:

    如下图所示,设00,f(a)=f(b)。设f为绕原点0可转动的细棍(射线),放手后落在函数f(x)的图象上并支撑在点从直观上看.证明函数并由此证明(★)式。


    答案:
    解析:

  • 第8题:

    某教师关于“反比例函数图象”教学过程中的三个步骤为:
    第一步:复习回顾
    提出问题:我们已经学过一次函数的哪些内容?是如何研究的?
    第二步:引入新课。
    提出问题:反比例函数的图形是什么形状呢?
    引导学生利用描点法画出y=1/x的图象。
    列表:

    描点:
    连线:引导学生用光滑的曲线连接描点,并用计算机演示图象的生成过程。在此过程中启发学生思考,由于x,y都不能为0,所以函数图象与x轴、y轴不能有交点(如下图)
    ……(第三步过程省略)
    (1)该教学过程的主要特点是什么?
    (2)在第二步的连线过程中,如果你是该老师,如何引导学生思考所连的线不是直线,而是光滑曲线
    (3)对于第三步的③,如果你是该老师,如何引导学生思考函数图象在第一象限(或第三象限)的变化?


    答案:
    解析:
    (1)在导入过程运用了温故知新导入,优势是可以帮助学生复习已经学习过的知识,从学习过的知识当中找到前后联系,从而引出新课题,帮助学生快速进入课堂。
    在新课教学过程中让学生通过动手操作画出反比例函数阁象,但是在引导学生运用列表法的时候选出的点不够有代表性,x轴不能都是整数,可以随机地选取一部分分数,为下边讲解函数图象是一条光滑的曲线做准备。
    另外在此过程中利用现代教学手段,计箅机演示是一种很好的教学方法,可以很直观地将函数图象的动态画面展示给学生,方便学生建立数形结合的意识。
    第三步,组织学生观察讨论曲线特点,根据选取图象中若干特殊点,总结在第一象限以及第三象限的变化情况。
    (2)反比例函数图象的特点是光滑的曲线,而不是折线,这是区别一次函数图象最大的特点,首先我会请学生分小组讨论这个问题。如果反函数的图象的点是用折线连起来会是什么图形,用曲线连起来会是什么图形。给学生3分钟时间讨论,在讨论的过程中我会给与学生提示,我们选取的点是有限的,其实反比例函数的点是无数个的,为什么正多边形的边无限增多就变成了光滑的圆。讨论结束有小组代表回答,鉴于这个问题有难度,在学生回答结束之后我会给予详细的讲解:反比例函数的图象可通过描点法给出,折线是由若干直线组合而成,而直线必须对应一个一次函数,显然反比例函数不能对应到一次函数上,所以它不是折线,而是曲线。另外我们只是描了图象上少数的几个点,图象构架比较空,所以自然地认为看起来应该用折线连,如果多描几个点,多到密密麻麻的情况,就会明白其实这个就和“正多边形边数越多越接近圆,圆就是正多边形边数无限大时的情况”的道理是一样的。逐步提升学生有限无限思想。
    (3)在此环节我将组织学生通过选取若干特殊点进行比较,独立思索曲线的变化情况,并鼓励学生大胆说出自己的想法,并给予鼓励,已达到锻炼学生从数学模型中抽象出数学结论的能力,对于数学图象的变化得到初步的锻炼以及提升。

  • 第9题:

    已知

    的部分图象如图所示,则y=f(x)的图象向右平移

    个单位后得到的图象解析式为( )。



    答案:D
    解析:
    由图可知该正弦函数最大值为1,故

  • 第10题:

    已知函数f(x)=x2+4lnx.
    (1)求函数f(x)在[1,e]上的最大值和最小值;
    (2)证明:当x∈[1,+∞)时,函数八戈)的图象在g(x)=2x3的图象的下方。


    答案:
    解析:

  • 第11题:

    填空题
    函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则∂2f/∂u∂v=____。

    正确答案: -g′(v)/g2(v)
    解析:
    要求f(u,v)对自变量的偏导,则需将关系式f[xg(y),y]=x+g(y)转化为只含有u、v的关系式,故令u=xg(y),v=y,则x=u/g(v),y=v,f(u,v)=u/g(v)+g(v),故∂f/∂u=1/g(v),∂2f/∂u∂v=-g′(v)/g2(v)。

  • 第12题:

    单选题
    设f(x)是R上的函数,则下列叙述正确的是()。
    A

    f(x)f(-x)是奇函数

    B

    f(x)|f(x)|是奇函数

    C

    f(x)-f(-x)是偶函数

    D

    f(x)+f(-x)是偶函数


    正确答案: C
    解析: 可以用特殊值法排除。可假设f(x)=x,此时f(x)f(-x)=-x2是偶函数,可以排除A;f(x)-f(-x)=2x是奇函数可以排除C;假设f(x)=x2可以排除B选项。

  • 第13题:

    设f(x)有连续导数,则下列关系式中正确的是:


    答案:B
    解析:

  • 第14题:

    函数f(x)=2sin3x的图象按向量a平移后得到的图象与g(x)=2cos3x的图象重合,则向量a可以是

    A.(-π/2,0)
    B.(π/2,0)
    C.(-π/6,0)
    D.(π/6,0)

    答案:C
    解析:
    ∵sin3x与cos3x互为余函数,又两函数周期都缩小了3倍 ∴移动后需重合必须移动π/2/3=±π/6 (+为右移,-为左移)
    又∵D(π/6,0),使f(x)=-g(x),(cos3x在第二象限) ∴选C

  • 第15题:

    关于反比例函数y=2/x,下列说法不正确的是()。,

    A.点(-2,-1)在它的图象上
    B.它的图象在第一、三象限
    C.当x>0时,y随x增大而增大
    D.当x<0时,y随x增大而减小

    答案:C
    解析:
    当x>0时,y随x增大而减小。

  • 第16题:

    如图所示,下列选项中,弯矩图正确的是(  )。




    答案:B
    解析:
    该结构为静定结构。铰点右半部分为附属结构,其受到M作用,故其支座反力不为零,由此可排除A项;集中力偶m作用处弯矩图必有突变,排除C、D两项。

  • 第17题:

    下列函数图象与y=f(x)的图象关于原点对称的是(  )

    A.y=-f(x)
    B.y=f(-x)
    C.y=-f(-x)
    D.y=|f(x)|

    答案:C
    解析:

  • 第18题:

    函数y(x)的导函数f(x)的图象如图所示,Xo=-1,则( )

    A、X。不是驻点
    B、x。是驻点,但不是极值点
    C、x。是极小值点
    D、 X。极大值点

    答案:C
    解析:
    由图可知
    f,+(‰)>0,一(‰)<0且f(x)在x连续可导,故xo为极小值点。

  • 第19题:

    设x=a是代数方程f(x)=0的根,则下列结论不正确的是( )。

    A、 叫是f(x)的因式
    B、X-a整除f(x)
    C、(a,0)是函数y=f(x)的图象与2轴的交点
    D、 f(a)=0

    答案:D
    解析:
    由于X,=01是代数方程f(x)-0的根,故有f(a)=o,x一a是f(x)的因式.X-Ot整除f(x),(a,0)f(a)=0,比如f(x)≈x-2。

  • 第20题:

    关于二次函数y=2-(x+1)2的图象,下列说法正确的是( )。

    A.图象开口向上
    B.图象的对称轴为直线x=1
    C.图象有最低点
    D.图象的顶点坐标(-1,2)

    答案:D
    解析:
    由二次函数图象的性质可知,其开口方向向下,有最大值2,对称轴为x=-1,顶点坐标(-1,2)。二次函数y=a(x+h)2+k(α≠0)中,α决定了二次函数图象的开口方向,顶点坐标为(-h,k)。

  • 第21题:



    若函数f(x)的图象上点P(1,m)处的切线方程为3x-y+b=0,则m的值为__________。


    答案:
    解析:

  • 第22题:

    设f(x)是R上的函数,则下列叙述正确的是()。

    • A、f(x)f(-x)是奇函数
    • B、f(x)|f(x)|是奇函数
    • C、f(x)-f(-x)是偶函数
    • D、f(x)+f(-x)是偶函数

    正确答案:D

  • 第23题:

    问答题
    若函数f(x,y,z)恒满足关系式f(tx,ty,tz)=tkf(x,y,z)就称为k次齐次函数,验证k次齐次函数满足关系式(其中f存在一阶连续偏导数)x∂f/∂x+y∂f/∂y+z∂f/∂z=kf(x,y,z)。

    正确答案:
    为简化计算,可令u=tx,v=ty,w=tz,则f(u,v,w)=tkf(x,y,z),两边对t求导,得x∂f/∂u+y∂f/∂v+z∂f/∂w=ktk-1f(x,y,z),则上式对一切实数t都成立。令t=1,得x∂f/∂x+y∂f/∂y+z∂f/∂z=kf(x,y,z)。
    解析: 暂无解析