参考答案和解析
∵X,Y相互独立,且均服从标准正态分布N(0,1), ∴Z=X 2 +Y 2 ,是2个自由度的x 2 -分布,即x 2 (2) 而卡方分布的期望等于其自由度 ∴EZ=2
更多“设随机变量(X,Y)~N(1, 2; 3, 4; 0), 则2X-Y服从的分布为”相关问题
  • 第1题:

    设随机变量X服从正态分布N(μ,σ^2),(σ>0)且二次方程y^2+4y+X=0无实根的概率为,则μ=________.


    答案:1、4
    解析:
    二次方程无实根,即y^2+4y+X=0的判别式16-4X<0.其概率为,即P{X>4}=,所以μ=4,答案应填4.

  • 第2题:

    设随机变量X,Y相互独立,且X~N(0,4),Y的分布律为Y~.则P(X-1-2Y≤4)=_______.


    答案:1、0.46587
    解析:
    p(X+2Y≤4)=P(Y=1)P(X≤4-2Y|Y=1)+P(Y=2)P(X≤4-2Y|Y=2)+P(Y=3)P(X≤4-2Y|Y=3)

  • 第3题:

    设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=_________.


    答案:
    解析:
    (X,Y)~N(1,0;1,1;0),所以X与Y相互独立,且X~N(1,1),Y~N(0,1)也就有(X-1)~N(0,1)与Y相互独立,再根据对称性:P{X-1<0}=P{X-1>0}=P(Y<0)=P{Y>0}=.不难求出P{XY-Y<0}的值.

  • 第4题:

    设随机变量X和Y都服从N(0,1)分布,则下列叙述中正确的是( )。


    答案:C
    解析:

  • 第5题:

    设随机变量X和Y相互独立,都服从正态分布N(0,1/2),则Y−X的方差为()。

    • A、1-1/π
    • B、1-2/π
    • C、1
    • D、2
    • E、4

    正确答案:B

  • 第6题:

    设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为λ=3的泊松分布,记Y=X1-2X2+3X3。则DY=()。


    正确答案:46

  • 第7题:

    若随机变量X服从正态分布N(0,4),则随机变量Y=X-2的分布为()

    • A、N(-2,4)
    • B、N(2,4)
    • C、N(0,2)
    • D、N(-2,2)

    正确答案:A

  • 第8题:

    设(X,Y)服从二元正态分布N(0,1,1,4,0,5),则E(2X2-XY+3)=()。


    正确答案:4

  • 第9题:

    单选题
    设随机变量X和Y都服从N(0,1)分布,则下列叙述中正确的是()。
    A

    X+Y服从正态分布

    B

    X2+Y2~x2分布

    C

    X2和Y2都服从X2分布

    D

    分布


    正确答案: C
    解析: 暂无解析

  • 第10题:

    单选题
    设随机变量X服从正态分布N(-1,9),则随机变量Y=2-X服从().
    A

    正态分布N(3,9)

    B

    均匀分布

    C

    正态分布N(1,9)

    D

    指数分布


    正确答案: D
    解析: 按定理1,Y是X的线性函数,y依然服从正态分布,由k=-1、c=2算得y服从正态 分布 N(2-(-1),(-1)2×9)=N(3,9). 故选(A).

  • 第11题:

    单选题
    设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为0.5,则μ=(  )。
    A

    1

    B

    2

    C

    4

    D

    5


    正确答案: A
    解析:
    令Y=(X-μ)/σ,则Y服从标准正态分布N(0,1)。
    该二次方程无实根的充要条件为4-X<0,根据题意,有:
    0.5=P{X>4}=1-P{X≤4}=1-P{(X-μ)/σ≤(4-μ)/σ}=1-P{Y≤(4-μ)/σ}=1-Φ[(4-μ)/σ],即Φ[(4-μ)/σ]=0.5,故(4-μ)/σ=0,μ=4。

  • 第12题:

    填空题
    设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2~N(0,22),X3服从参数为λ=3的泊松分布,记随机变量Y=X1-2X2+3X3,则D(Y)=____。

    正确答案: 46
    解析:
    ∵X1~U[0,6],X2~N[0,22],X3~P(3)。
    ∴D(X1)=62/12=3,D(X2)=22=4,D(X3)=3。
    又X1,X2,X3相互独立,故D(Y)=D(X1-2X2+3X3)=D(X1)+4D(X2)+9D(X3)=3+4×4+9×3=46。

  • 第13题:

    设随机变量X~N(0,σ^2),Y~N(0,4σ^2),且P(X≤1,y≤-2)=,则P(X>1,Y>-2)=_______.


    答案:
    解析:

  • 第14题:

    设二维随机变量(X,Y)服从正态分布N(μ,μ;σ^2,σ^2;0),则E(XY^2)=________.


    答案:
    解析:

  • 第15题:

    设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为

    A.A0
    B.1
    C.2
    D.3

    答案:D
    解析:

  • 第16题:

    设随机变量X和Y相互独立,都服从正态分布N(μ,σ2),令ξ=X+Y,η=X−Y,则ξ和η的相关系数为()。

    • A、-4/9
    • B、-1/2
    • C、1/2
    • D、0
    • E、5/9

    正确答案:C

  • 第17题:

    设随机变量X和Y都服从N(0,1)分布,则下列叙述中正确的是()。

    • A、X+Y服从正态分布
    • B、X2+Y2~x2分布
    • C、X2和Y2都服从X2分布
    • D、分布

    正确答案:C

  • 第18题:

    设随机变量X服从[0,2]上的均匀分布,Y=2X+1,则D(Y)=()。


    正确答案:4/3

  • 第19题:

    设随机变量X服从正态分布N(-1,9),则随机变量Y=2-X服从().

    • A、正态分布N(3,9)
    • B、均匀分布
    • C、正态分布N(1,9)
    • D、指数分布

    正确答案:A

  • 第20题:

    设随机变量X服从正态分布U(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=()


    正确答案:4

  • 第21题:

    填空题
    设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为0.5,则μ=____。

    正确答案: 4
    解析:
    令Y=(X-μ)/σ,则Y服从标准正态分布N(0,1)。
    该二次方程无实根的充要条件为4-X<0,根据题意,有:
    0.5=P{X>4}=1-P{X≤4}=1-P{(X-μ)/σ≤(4-μ)/σ}=1-P{Y≤(4-μ)/σ}=1-Φ[(4-μ)/σ],即Φ[(4-μ)/σ]=0.5,故(4-μ)/σ=0,μ=4。

  • 第22题:

    单选题
    设随机变量X和Y相互独立,都服从正态分布N(0,1/2),则Y−X的方差为()。
    A

    1-1/π

    B

    1-2/π

    C

    1

    D

    2

    E

    4


    正确答案: B
    解析: 暂无解析

  • 第23题:

    填空题
    设随进变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2~N(0,22),X3服从参数为λ=3的泊松分布,记随机变量Y=X1-2X2+3X3,则D(Y)=____.

    正确答案: 46
    解析:
    ∵X1~U[0,6]   X2~N[0,22]   X3~P(3)
    ∴D(X1)=62/12=3   D(X2)=22=4   D(X3)=3
    又X1,X2,X3相互独立,故
    ∴D(Y)=D(X1-2X2+3X3)=D(X1)+4D(X2)+9D(X3)=3+4×4+9×3=46

  • 第24题:

    单选题
    设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2~N(0,22),X3服从参数为λ=3的泊松分布,记随机变量Y=X1-2X2+3X3,则D(Y)=(  )。
    A

    56

    B

    48

    C

    72

    D

    46


    正确答案: B
    解析:
    ∵X1~U[0,6],X2~N[0,22],X3~P(3)。
    ∴D(X1)=62/12=3,D(X2)=22=4,D(X3)=3。
    又X1,X2,X3相互独立,故D(Y)=D(X1-2X2+3X3)=D(X1)+4D(X2)+9D(X3)=3+4×4+9×3=46。