某次运动会需组织长宽相等的方阵。组织方安排了一个鲜花方阵和一个彩旗方阵,两个方阵分别入场完毕后又合成一个方阵,鲜花方阵的人恰好组成新方阵的最外圈。已知彩旗方阵比鲜花方阵多28人,则新方阵的总人数为( )。A.100 B.144 C.196 D.256

题目
某次运动会需组织长宽相等的方阵。组织方安排了一个鲜花方阵和一个彩旗方阵,两个方阵分别入场完毕后又合成一个方阵,鲜花方阵的人恰好组成新方阵的最外圈。已知彩旗方阵比鲜花方阵多28人,则新方阵的总人数为( )。

A.100
B.144
C.196
D.256

相似考题
参考答案和解析
答案:A
解析:
第一步,本题考查方阵问题,用代入排除法解题。
第二步,代入A选项,即总人数为100人,根据公式总数=最外层每边人数2,可得最外层每边人数为10人,又根据最外层人数=4×最外层每边人数-4,可得最外层人数=4×10-4=36(人),即鲜花方阵的人数为36人,可得彩旗方阵的人数=100-36=64(人),两者差64-36=28(人),且36、64均为平方数,可构成方阵,满足题意。
因此,选择A选项。
更多“ 某次运动会需组织长宽相等的方阵。组织方安排了一个鲜花方阵和一个彩旗方阵,两个方阵分别入场完毕后又合成一个方阵,鲜花方阵的人恰好组成新方阵的最外圈。已知彩旗方阵比鲜花方阵多28人,则新方阵的总人数为( )。”相关问题
  • 第1题:

    下列哪个方阵是亚历山大创立的:()

    • A、斯巴达方阵
    • B、雅典方阵
    • C、斜切战斗队形
    • D、马其顿方阵

    正确答案:D

  • 第2题:

    单选题
    五年级学生分成两队参加广播操比赛,排成甲、乙两个实心方阵,其中甲方阵最外层每边的人数为8。如果两队合并,可以另排成一个空心的丙方阵,丙方阵最外层每边的人数比乙方阵最外层每边的人数多4人,且甲方阵的人数正好填满丙方阵的空心。五年级一共有多少人?(  )
    A

    200

    B

    236

    C

    260

    D

    288


    正确答案: B
    解析:
    空心的丙方阵人数=甲方阵人数+乙方阵人数,若丙方阵为实心的,那么实心的丙方阵人数=2×甲方阵人数+乙方阵人数,即实心丙方阵比乙方阵多2×2=128人。丙方阵最外层每边比乙方阵多4人,则丙方阵最外层总人数比乙方阵多4×4=16人,即多了16÷8=2层。这两层的人数即为实心丙方阵比乙方阵多的128人,则丙方阵最外层人数为(128+8)÷2=68人,丙方阵最外层每边人数为(68+4)÷4=18人。那么,共有182-82=260人。

  • 第3题:

    单选题
    某大学参加军训队列表演,组织一个方阵队伍。如果每班60人,这个方阵至少要有5个班的同学参加;如果每班70人,这个方阵至少要有4个班的同学参加。那么组成这个方阵最外层的人数应为几人?(  )
    A

    16

    B

    64

    C

    68

    D

    60


    正确答案: A
    解析:
    设最外层每边人数为N,则方阵人数为N2,由题意可知,240<N2≤300,210<N2≤280,则240<N2≤280,而在240和280之间的完全平方数只有162=256,故N=16。则方阵最外层人数为4(N-1)=60人。

  • 第4题:

    单选题
    若干学校联合进行团体操表演,参演学生组成一个方阵,已知方阵由外到内第二层有104人,则该方阵共有学生(  )人。
    A

    625

    B

    841

    C

    1024

    D

    1369


    正确答案: C
    解析:
    由题意可知,方阵中最外层人数比相邻内层人数多8人,故最外层人数为104+8=112人。设最外层每边的人数为N人,则(N-1)×4=112,N=29,故方阵共有学生29×29=841人。