第1题:
A、一定相同
B、一定不同
C、不一定相同
D、可能相同
第2题:
● 对连通图进行遍历前设置所有顶点的访问标志为 false(未被访问) ,遍历图后得到一个遍历序列,初始状态为空。深度优先遍历的含义是:从图中某个未被访问的顶点 v 出发开始遍历,先访问 v 并设置其访问标志为 true(已访问) ,同时将 v 加入遍历序列,再从 v 的未被访问的邻接顶点中选一个顶点,进行深度优先遍历;若 v的所有邻接点都已访问,则回到 v 在遍历序列的直接前驱顶点,再进行深度优先遍历,直至图中所有顶点被访问过。 (40) 是下图的深度优先遍历序列。
(40)
A. 1 2 3 4 6 5
B. 1 2 6 3 4 5
C. 1 6 2 5 4 3
D. 1 2 3 4 5 6
第3题:
以下关于图的遍历的叙述中,正确的是(61)。
A.图的遍历是从给定的源点出发对每一个顶点仅访问一次的过程
B.图的深度优先遍历方法不适用于无向图
C.使用队列对图进行广度优先遍历
D.图中有回路时则无法进行遍历
第4题:
已知图G=(V,E),其中V=(a,b,c,d,e,f),E:{<a,b>,<a,d>,<a,e>,<d,e>,<e, b>,<c,b>,<c,e>,<c,b,<f,e>},则从该图的顶点a出发的深度优先遍历序列是(51),广度优先遍历序列是(52),其深度优先生成树(或森林)是(53),广度优先生成树(或森林)是(54),该图的一个拓扑序列是(55)。
A.abdecf
B.abdcef
C.aebdcf
D.adebfe
第5题:
第6题:
设连通图G中的边集E={(a,b),(a,e),(a,c),(b,e),(e,d),(d,f),(f,c)},则从顶点a出发可以得到一种深度优先遍历的顶点序列为()
第7题:
假定一个有向图的边集为{,,< c,f>,< d,c>,< e,b>,< e,d>},对该图进行拓扑排序得到的顶点序列为()
第8题:
无向图G=(V,E),其中V={a,b,c,d,e,f},E={(a,b),(a,e),(a,c),(b,e),(c,f),(f,d),(e,d)},对该图进行深度优先遍历,得到的顶点序列正确的是()。
第9题:
逆拓扑有序
拓扑有序
无序
深度优先遍历序列
第10题:
第11题:
abedfc
acfebd
abcedf
abcdef
第12题:
第13题:
设无向图G中的边的集合E={(a,b),(a,e),(a,c),(b,e),(e,d),(d,f),(f,c)},则从顶点a出发进行深度优先遍历可以得到的一种顶点序列为()。
A.aedfcb
B.acfebd
C.aebcfd
D.aedfbc
第14题:
设有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7,V8),E={V1,V2>,<V1,V3>,<V2,V4>,<V2,V6>,<V3,V5>,<V4,V8>,<V5,V4>,<V6,V3>,<V6,V7>, (V7,V5>,<V8,V7>),那么该图的邻接表可以是(10),按照该邻接表从V1,出发,图G的深度优先遍历序列为(11),广度优先遍历序列为(12)。
A.
B.
C.
D.
第15题:
阅读以下说明和代码,填补代码中的空缺,将解答填入答题纸的对应栏内。 【说明】 图是很多领域中的数据模型,遍历是图的一种基本运算。从图中某顶点v出发进行广度优先遍历的过程是: ①访问顶点v; ②访问V的所有未被访问的邻接顶点W1 ,W2 ,..,Wk; ③依次从这些邻接顶点W1 ,W2 ,..,Wk出发,访问其所有未被访问的邻接顶点;依此类推,直到图中所有访问过的顶点的邻接顶点都得到访问。 显然,上述过程可以访问到从顶点V出发且有路径可达的所有顶点。对于从v出发不可达的顶点u,可从顶点u出发再次重复以上过程,直到图中所有顶点都被访问到。 例如,对于图4-1所示的有向图G,从a出发进行广度优先遍历,访问顶点的一种顺序为a、b、c、e、f、d。设图G采用数组表示法(即用邻接矩阵arcs存储),元素arcs[i][j]定义如下:图4-1的邻接矩阵如图4-2所示,顶点a~f对应的编号依次为0~5.因此,访问顶点a的邻接顶点的顺序为b,c,e。 函数BFSTraverse(Graph G)利用队列实现图G的广度优先遍历。 相关的符号和类型定义如下: define MaxN 50 /*图中最多顶点数*/ typedef int AdjMatrix[MaxN][MaxN]; typedef struct{ int vexnum, edgenum; /*图中实际顶点数和边(弧)数*/ AdjMatrix arcs; /*邻接矩阵*/ )Graph; typedef int QElemType; enum {ERROR=0;OK=1}; 代码中用到的队列运算的函数原型如表4-1所述,队列类型名为QUEUE。 表4-1 实现队列运算的函数原型及说明
【代码】 int BFSTraverse(Graph G) {//对图G进行广度优先遍历,图采用邻接矩阵存储 unsigned char*visited; //visited[]用于存储图G中各顶点的访问标志,0表示未访问 int v, w, u; QUEUEQ Q; ∥申请存储顶点访问标志的空间,成功时将所申请空间初始化为0 visited=(char*)calloc(G.vexnum, sizeof(char)); If( (1) ) retum ERROR; (2) ; //初始化Q为空队列 for( v=0; v<G.vexnum; v++){ if(!visited[v]){ //从顶点v出发进行广度优先遍历 printf("%d”,v); //访问顶点v并将其加入队列 visited[v]=1; (3) ; while(!isEmpty(Q)){ (4) ; //出队列并用u表示出队的元素 for(w=0;v<G.vexnum; w++){ if(G.arcs[u][w]!=0&& (5) ){ //w是u的邻接顶点且未访问过 printf("%d”, w); //访问顶点w visited[w]=1; EnQueue(&Q, w); } } } } free(visited); return OK; )//BFSTraverse
第16题:
第17题:
若已知有向图G=(V,E),其中,顶点的集合为V={v1,v2,v3,v4,v5},弧的集合为E={
第18题:
如果无向图G有n个顶点、e条边且用邻接矩阵进行存储,那么深度优先遍历图G的时间复杂度为()。
第19题:
已知一无向图G=(V,E),其中V={a,b,c,d,e}E={(a,b),(a,d),(a,c),(d,c),(b,e)}现用某一种图遍历方法从顶点a开始遍历图,得到的序列为abecd,则采用的是()方法。
第20题:
用深度优先遍历方法遍历一个有向无环图,并在深度优先遍历算法中按退栈次序打印出相应的顶点,则输出的顶点序列是()。
第21题:
第22题:
adcbe
dabce
abdce
abcde
第23题:
a,b,e,c,d,f
a,c,f,e,b,d
a,e,b,c,f,d
a,e,d,f,c,b