参考答案和解析
正确答案:0.39*0.7
更多“袋中有大小相同的黑球7只,白球3只,每次从中任取一只,有放回抽取,记首次抽到黑球时抽取的次数为X,则P{X=10}=()。”相关问题
  • 第1题:

    袋中装有大小相同的12个球,其中5个白球和7个黑球,从中任取3个球,求
    这3个球中至少有1个黑球的概率.


    答案:
    解析:
    此题利用对立事件的概率计算较为简捷,

  • 第2题:

    袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,求以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数。①求②求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第3题:

    一个布袋中装有大小相同的3个白球、4个红球和2个黑球,每次从袋中摸出一球不再放回。问恰好在第3次取得黑球的概率是多少?


    答案:A
    解析:

  • 第4题:

    一个袋子里有10个小球,其中4个白球,6个黑球,无放回地每次抽取1个,则第二次取到白球的概率是多少?( )


    答案:D
    解析:

  • 第5题:

    袋中有l个红色球,2个黑色球与三个白球,现有放回地从袋中取两次,每次取一球,以 X,Y,Z分别表示丽次取球所取得的红球、黑球与白球的个数。
    (1)求P{X=1|Z=0};
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第6题:

    一个口袋中有7个红球3个白球,从袋中任取一球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设AB分别表演一、二次取红球,则有P(AB)=P(A)P(B|A)=7/106/9=7/15。

  • 第7题:

    已知有5个红球,3个黑球,有放回的抽取,则第二次抽到黑球的概率是()。

    • A、3/5
    • B、2/7
    • C、3/8
    • D、2/3

    正确答案:C

  • 第8题:

    一袋中有2个黑球和若干个白球,现有放回地摸球4次,若至少摸到一个白球的概率是80/81,则袋中白球的个数是()。


    正确答案:4

  • 第9题:

    已知有5个红球,3个黑球,不放回的抽取,已知第一次抽到黑球,则第二次抽到黑球的概率是()。

    • A、3/5
    • B、2/7
    • C、3/8
    • D、2/3

    正确答案:B

  • 第10题:

    单选题
    一个袋子里有10个小球,其中4个白球,6个黑球,无放回地每次抽取1个,则第二次取到白球的概率是多少?(  )
    A

    2/15

    B

    4/15

    C

    1/5

    D

    2/5


    正确答案: C
    解析:
    可分成两种情况:①第一次取到白球,第二次也取到白球的概率是:4/10×3/9=12/90;②第一次取到黑球,第二次取到白球的概率是:6/10×4/9=24/90,即第二次取到白球的概率为24/90+12/90=2/5。

  • 第11题:

    单选题
    一只盒子中有红球m个,白球10个,黑球n个,每个球除颜色外其他都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是(  ).
    A

    m=4,n=6

    B

    m=5,n=5

    C

    m+n=5

    D

    m+n=10


    正确答案: B
    解析:
    因为从中任取一个球,取得白球的概率与不是白球的概率相同.所以白球的个数与不是白球的球的个数相等,所以m+n=10.

  • 第12题:

    填空题
    甲袋中有5只白球,5只红球,15只黑球,乙袋中有10只白球,5只红球,10只黑球,从两袋中各取一球,则两球颜色相同的概率为____。

    正确答案: 9/25
    解析:
    分别记白、红、黑为第1、2、3种颜色,设Ai:“从甲袋中取出的是第i种颜色的球”;Bi:“从乙袋中取出的是第i种颜色的球”;C:“取出的球的颜色相同”。则C=A1B1∪A2B2∪A3B3
    故P(C)=P(A1B1∪A2B2∪A3B3)=P(A1B1)+P(A2B2)+P(A3B3)=P(A1)P(B1)+P(A2)P(B2)+P(A3)P(B3)=(5/25)×(10/25)+(5/25)×(5/25)+(15/25)×(10/25)=9/25。

  • 第13题:

    有甲、乙两个口袋,两袋中都有3个白球2个黑球,现从甲袋中任取一球放入乙袋,再从乙袋中任取4个球,设4个球中的黑球数用X表示,求X的分布律.


    答案:
    解析:

  • 第14题:

    袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2次,每次取1个,定义两个随机变量如下:
      
      就下列两种情况,求(X,Y)的联合分布律:
      (1)第一次抽取后放回;(2)第一次抽取后不放回.


    答案:
    解析:

  • 第15题:

    袋中有1个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.
    (Ⅰ)求P{X=1|Z=0};
    (Ⅱ)求二维随机变量(X,Y)的概率分布.


    答案:
    解析:

  • 第16题:

    一个袋子里放有10个小球(其中4个白球,6个黑球),无放回地每次抽取1个,则第二次取到白球的概率是( )

    A. 2/15
    B. 4/15
    C. 1/5
    D. 2/5

    答案:D
    解析:
    解题指导: 第一次取到白球,第二次取到白球的机率为4/10*3/9=2/15 ;第一次取到黑球,第二次取到白球的机率为6/10*4/9=4/15 。可知,第二次取到白球的机率为4/15+2/15=2/5,故答案为D。

  • 第17题:

    袋中有l个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数。
    (1)求
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第18题:

    一个口袋中有7个红球3个白球,从袋中任取一任球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设A、B分别表示第一、二次红球,则有P(AB)=P(A)P(B|A=7/106/9=7/15。

  • 第19题:

    袋中有大小相同的红球4只,黑球3只,从中随机一次抽取2只,则此两球颜色不同的概率为()。


    正确答案:4/7

  • 第20题:

    袋中有4个白球2个黑球,今从中任取3个球,则至少一个黑球的概率为()

    • A、4/5
    • B、1
    • C、1/5
    • D、1/3

    正确答案:A

  • 第21题:

    设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个黑球的概率是()


    正确答案:16/25

  • 第22题:

    问答题
    38.当袋中有2个白球3个红球.现从袋中随机地抽取2个球,以X表示取到的红球个数。求X的分布律.

    正确答案:
    解析:

  • 第23题:

    单选题
    袋中有5个白球 ,n个红球,从中任取一个恰为红球的概率为2/3,则n为(  )
    A

    16  

    B

    10  

    C

    20   

    D

    18


    正确答案: B
    解析: 根据概率的定义:P=n/5+n=2/3