问答题8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求: (1)第一次取到白球、第二次取到红球的概率; (2)两次取得一红球一白球的概率.

题目
问答题
8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球、第二次取到红球的概率;    (2)两次取得一红球一白球的概率.

相似考题
更多“8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球”相关问题
  • 第1题:

    一个袋内装有10个球,其中有3个白球,5个红球,2个黑球采取不放回抽样,每次取1件,则第二次取到的是白球的概率是()

    A、0.6

    B、0.5

    C、0.4

    D、0.3


    参考答案:D


  • 第2题:

    一袋中有5个乒乓球,其中4个白球,1个红球,从中任取2个球的不可能事件是()

    A.{2个球都是白球}
    B.{2个球都是红球}
    C.{2个球中至少有1个白球}
    D.{2个球中至少有1个红球}

    答案:B
    解析:
    袋中只有1个红球,从中任取2个球都是红球是不可能发生的.

  • 第3题:

    袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是________.


    答案:
    解析:
    一般理解随机事件“第二个人取得黄球”与第一个人取得的是什么球有关,这就要用全概率公式来计算,但也可以用古典型概率来解,这会简单得多.(方法一)设事件Ai表示第i个人取得黄球,i=1,2,则根据全概率公式:

    (方法二)只考虑第二个人取得的球,这50个球中每一个都会等可能地被第二个人取到,而取到黄球的可能有20个,故所求概率为

  • 第4题:

    袋中有a个黑球和b个白球,一个一个地取球,求第k次取到黑球的概率(1≤k≤a+b).


    答案:
    解析:
    方法一基本事件数n=(a+b)!,设Ak={第k次取到黑球),则有利样本点数为a(a+b-1)!,所以

    方法二把所有的球看成不同对象,取k次的基本事件数为,第k次取到黑球所包含的事件数为,则

  • 第5题:

    袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2次,每次取1个,定义两个随机变量如下:
      
      就下列两种情况,求(X,Y)的联合分布律:
      (1)第一次抽取后放回;(2)第一次抽取后不放回.


    答案:
    解析:

  • 第6题:

    袋中有50个球,其中20个新球,30个旧球,现每次取1球,无放回地取2次,则第2次取得旧球的概率是()。



    答案:A
    解析:

  • 第7题:

    袋中有l个红色球,2个黑色球与三个白球,现有放回地从袋中取两次,每次取一球,以 X,Y,Z分别表示丽次取球所取得的红球、黑球与白球的个数。
    (1)求P{X=1|Z=0};
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第8题:

    袋中有l个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球,以X,y,Z分别表示两次取球所取得的红球、黑球与白球的个数。
    (1)求
    (2)求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第9题:

    一个袋子里有8个黑球,8个白球,随机不放回地连续取球五次。每次取出1个球,求最多取到3个白球的概率。


    答案:
    解析:

  • 第10题:

    一个口袋中有7个红球3个白球,从袋中任取一球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设AB分别表演一、二次取红球,则有P(AB)=P(A)P(B|A)=7/106/9=7/15。

  • 第11题:

    设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个黑球的概率是()


    正确答案:16/25

  • 第12题:

    问答题
    38.当袋中有2个白球3个红球.现从袋中随机地抽取2个球,以X表示取到的红球个数。求X的分布律.

    正确答案:
    解析:

  • 第13题:

    盒内装有10个白球,2个红球,每次取1个球,取后不放回。任取两次,则第二次取得红球的概率是:

    A. 1/7
    B.1/6
    C.1/5
    D. 1/3

    答案:B
    解析:

    或“试验分两步,求第二步结果的概率”用全概率公式。

  • 第14题:

    一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.
      (1)一次性抽取4个球;(2)逐个抽取,取后无放回;(3)逐个抽取,取后放回.


    答案:
    解析:
    【解】(1)设A1={一次性抽取4个球,其中2个红球2个白球),则
    (2)设A2={逐个抽取4个球,取后不放回,其中2个红球2个白球},则

    (3)设A3={逐个抽取4个球,取后放回,其中2个红球2个白球},则

  • 第15题:

    设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为_______.


    答案:
    解析:
    设A1={第一次取红球),A2={第一次取白球),B={第二次取红球),  


      

  • 第16题:

    袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,求以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数。①求②求二维随机变量(X,Y)的概率分布。


    答案:
    解析:

  • 第17题:

    袋中有1个红球、2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.
    (Ⅰ)求P{X=1|Z=0};
    (Ⅱ)求二维随机变量(X,Y)的概率分布.


    答案:
    解析:

  • 第18题:

    一个口袋中有4个白球,1个红球,7个黄球.搅匀后随机从袋中摸出1个是白球的概率是_________.


    答案:
    解析:

  • 第19题:

    袋子中有70个红球,30个黑球,从袋中任意摸出一个球,观察颜色后放回袋中,再摸第二个球,观察颜色后也放回袋中。

    (1)求两次摸球均为红球的概率;(3分)

    (2)求两次摸球颜色不同的概率。(4分)


    答案:
    解析:
    本题主要考查的是熟练运用分步法、分类法等方法求概率。

    通过不同事件随机发生概率进行分步分类计算。

  • 第20题:

    一个袋子里有8个黑球,8个白球,随机不放回连续取球5次,每次取出1个球,求最多取到3个白球的概率. .?


    答案:
    解析:

  • 第21题:

    袋子中有70个红球,30个黑球,从袋子中连续摸球两次,每次摸一个球,且第一次摸出的球,不放回袋中:
    (1)求两次摸球均为红球的概率:
    (2)若第一次摸到红球,求第二次摸到黑球的概率。


    答案:
    解析:
    平面π的法向量为n=(3,-1,2);

  • 第22题:

    袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回地取2次,则第二次取到新球的概率是().

    • A、3/5
    • B、3/4
    • C、1/2
    • D、3/10

    正确答案:A

  • 第23题:

    填空题
    一袋中有50个乒乓球,其中20个红球,30个白球,今两人从袋中各取一球,取后不放回,则第二个人取到红球的概率为____。

    正确答案: 2/5
    解析:
    设A:“第一个人取红球”,B:“第二个人取红球”,则
    P(B)=P[B(A∪A(_))]=P(AB)+P(A(_)B)=P(B|A)P(A)+P(B|A(_))P(A(_))=(19/49)×(20/50)+(20/49)×(30/50)=2/5

  • 第24题:

    问答题
    8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球、第二次取到红球的概率;    (2)两次取得一红球一白球的概率.

    正确答案:
    解析: 暂无解析