单选题已知β(→)1β(→)2是非齐次方程组AX(→)=b(→)的两个不同的解,α(→)1α(→)2是其对应的齐次线性方程组的基础解系,k1、k2是任意常数,则方程组AX(→)=b(→)的通解必是(  )。A k1α(→)1+k2(α(→)1+α(→)2)+(β(→)1-β(→)2)/2B k1α(→)1+k2(α(→)1-α(→)2)+(β(→)1+β(→)2)/2C k1α(→)1+k2(β(→)1+β(→)2)+(β(→)1-β(→)2)/2D k1α(→)1+k2(β(→)1-β(→)2)+(β(

题目
单选题
已知β(→)1β(→)2是非齐次方程组AX(→)=b(→)的两个不同的解,α(→)1α(→)2是其对应的齐次线性方程组的基础解系,k1、k2是任意常数,则方程组AX(→)=b(→)的通解必是(  )。
A

k1α()1+k2α()1α()2)+(β()1β()2)/2

B

k1α()1+k2α()1α()2)+(β()1β()2)/2

C

k1α()1+k2β()1β()2)+(β()1β()2)/2

D

k1α()1+k2β()1β()2)+(β()1β()2)/2


相似考题
更多“已知β(→)1β(→)2是非齐次方程组AX(→)=b(→)的两个不同的解,α(→)1α(→)2是其对应的齐次线性方程组的”相关问题
  • 第1题:

    设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )

    A.1 B.2

    C.3 D.4


    正确答案:D

  • 第2题:

    非齐次线性方程组任意两个解之差为对应系数的齐次线性方程组的解。()


    参考答案:正确

  • 第3题:

    齐次线性方程组AX=0若有两个不同的解,它就有无穷多个解


    答案:对
    解析:

  • 第4题:

    设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系

    A.不存在.
    B.仅含一个非零解向量.
    C.含有两个线性无关的解向量.
    D.含有三个线性无关的解向量.

    答案:B
    解析:

  • 第5题:

    设β1,β2是线性方程组Ax=b的两个不同的解,α1、α2是导出组Ax=0的基础解系,k1,k2是任意常数,则Ax=b的通解是:


    答案:C
    解析:

  • 第6题:

    已知4元非齐次线性方程组Ax=b的系数矩阵的秩等于3,且η1,η2,η3是3个不同的解向量,则通解是( ).

    A.x=k1(η-η2)+η3
    B.x=k1η1+k2η2+η3
    C.x=k1η1+k2η2+k3η3
    D.x=k1(η+η2)+η3

    答案:A
    解析:
    由n=4,r=3得s=1。ηη2是 Ax=0的基础解系

  • 第7题:

    取何值时,非齐次线性方程组 (1)有唯一解 (2)无解 (3)有无穷多个解? 并在无穷多个解时,求方程组的通解。


    答案:
    解析:

  • 第8题:

    已知齐次线性方程组
    同解,求a,b,c的值.


    答案:
    解析:

  • 第9题:

    已知下列非齐次线性方程组(Ⅰ),(Ⅱ)
      
      (1)求解方程组(Ⅰ),用其导出组的基础解系表示通解.
      (2)当方程组中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.


    答案:
    解析:

  • 第10题:

    已知齐次线性方程组(1)方程组仅有零解;(2)方程组有非零解,在有非零解时,求此方程组的一个基础解系.


    答案:
    解析:

  • 第11题:

    已知非齐次线性方程组有无限多个解,则t等于().

    • A、-1
    • B、1
    • C、4
    • D、-1或4

    正确答案:C

  • 第12题:

    单选题
    已知非齐次线性方程组有无限多个解,则t等于().
    A

    -1

    B

    1

    C

    4

    D

    -1或4


    正确答案: B
    解析: 暂无解析

  • 第13题:

    设α1,α2是非齐次线性方程组Ax=b的解.则A(5α2-4α1)=_________.


    正确答案:
    b

  • 第14题:

    设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).

    A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系
    B.k1ξ1+k1ξ2是Ax=0的通解
    C.k1ξ1+ξ2是Ax=0的通解
    D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系

    答案:A
    解析:
    由题设知道,n=5,s=n-r=2,r=3.B不正确,因为k1ξ1+k1ξ2=k1(ξ2+ξ1)只含有一个不定常数,同样理由说明C也不正确.D不正确,因为(ξ1-ξ2)+(ξ1+ξ2)=0,这表明ξ1-ξ2与ξ2-ξ1线性相关.A正确,因为ξ1-ξ2与ξ1+2ξ2都是Ax=0的解,且它 们线性无关,故选A.

  • 第15题:

    设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。

    A.若Ax=0仅有零解,则Ax=b有惟一解
    B.若Ax=0有非零解,则Ax=b有无穷多个解
    C.若Ax=b有无穷多个解,则Ax=0仅有零解
    D.若Ax=b有无穷多个解,则Ax=0有非零解

    答案:D
    解析:

  • 第16题:

    齐次线性方程组只有零解,则有( )。

    A、a-b=1
    B、a=1且a=2
    C、a≠1且b≠2
    D、a≠1或b≠2

    答案:C
    解析:
    方程组对应的矩阵,齐次线性方程组只有零解的充要条件是|A|≠0,即有a≠1且b≠2

  • 第17题:

    要使齐次线性方程组



    有非零解,则a应满足(  )。

    A. -2<a<1
    B. a=1或a=-2
    C. a≠-1且a≠-2
    D. a>1

    答案:B
    解析:
    齐次线性方程组的系数矩阵作初等变换如下



    要使齐次线性方程组有非零解,则矩阵的秩r<3,因此得a-1=0或-(a+2)(a-1)=0,计算得a=1或a=-2。
    【说明】n元齐次线性方程组Ax=0有非零解的充要条件是r(A)<n。

  • 第18题:

    设β1,β2是线性方程组Ax=b的两个不同的解,a1,a2是导出组Ax=0的基础解系,k1、k2是任意常数,则Ax=b的通解是:


    答案:C
    解析:


    k1a1+k2(a1-a2)=k1a1+k2a1-k2a2=(k1+k2)a1-k2a2
    设任意常数k1+k2=c,-k2=c2,则:
    k1a1+k2(a1-a2)=c1a1+c2a2
    从而选项C满足线性方程Ax=b的条件。

  • 第19题:

    取何值时 非齐次线性方程组, (1)有唯一解 (2)无解 (3)有无穷多个解,并在无穷多个解时,求方程组的通解


    答案:
    解析:

  • 第20题:

    设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为,(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解


    答案:
    解析:

  • 第21题:

    设,.
      已知线性方程组Ax=b存在2个不同的解.
      (Ⅰ)求λ,a;
      (Ⅱ)求方程组Ax=b的通解.


    答案:
    解析:
    【解】(Ⅰ)因为方程组Ax=b有2个不同的解,所以r(A)=r(A)
    知λ=1或λ=-1
    当λ=1时

    显然r(A)=1,r(=2,此时方程组无解,λ=1舍去.
    当λ=-1时,对Ax=b的增广矩阵施以初等行变换:

    因为Ax=b有解,所以a=-2.
    (Ⅱ)当λ=-1,a=-2时,

    所以Ax=b的通解为
    ,其中k为任意常数

  • 第22题:

    设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。



    答案:D
    解析:
    提示:由于线性无关,故R(A)= 1,显然选项A中矩阵秩为3,选项B和C中矩阵秩都为2。

  • 第23题:

    单选题
    已知β(→)1β(→)2是非齐次方程组AX(→)=b(→)的两个不同的解,α(→)1α(→)2是其对应的齐次线性方程组的基础解系,k1、k2是任意常数,则方程组AX(→)=b(→)的通解必是(  )。
    A

    k1α()1+k2α()1α()2)+(β()1β()2)/2

    B

    k1α()1+k2α()1α()2)+(β()1β()2)/2

    C

    k1α()1+k2β()1β()2)+(β()1β()2)/2

    D

    k1α()1+k2β()1β()2)+(β()1β()2)/2


    正确答案: D
    解析:
    A项,(β()1β()2)/2不是方程组AX()b()的解;B项,(β()1β()2)/2是AX()b()的特解,且α()1α()1α()2是其导出组的基础解系,故B项是AX()b()的通解;C项,β()1β()2不是方程组AX()0()的解;D项,α()1β()1β()2是否线性相关未知。