填空题设函数z=z(x,y)由方程F(x-az,y-bz)=0所给出,其中F(u,v)任意可微,则a∂z/∂x+(b∂z/∂y)=____。

题目
填空题
设函数z=z(x,y)由方程F(x-az,y-bz)=0所给出,其中F(u,v)任意可微,则a∂z/∂x+(b∂z/∂y)=____。

相似考题
更多“设函数z=z(x,y)由方程F(x-az,y-bz)=0所给出,其中F(u,v)任意可微,则a∂z/∂x+(b∂z/∂y”相关问题
  • 第1题:

    给定关系模式R<U ,F> ,其中 U 为关系 R 的属性集,F 是 U 上的一组函数依赖, X 、Y、Z 、W 是 U 上的属性组。下列结论正确的是( )。

    A.若 wx →y , y →Z 成立,则 X →Z 成立B.若 wx →y ,y →Z 成立,则 W →Z 成立C.若 X →y ,WY →z 成立,则 xw →Z 成立D. 若 X →y ,Z ⊆ U 成立,则 X →YZ 成立


    正确答案:C

  • 第2题:

    给定关系模式 R;其中 U 为属性集,F 是 U 上的一组函数依赖,那么 Armstroog 公理系统的增广律是指( )。

    A.若 X→Y,X→Z,则 X→YZ 为 F 所蕴涵
    B.若 X→Y,WY→Z,则 XW→Z 为 F 所蕴涵
    C.若 X→Y,Y→Z 为 F 所蕴涵,则 X→Z 为 F 所蕴涵
    D.若 X→Y,为 F 所蕴涵,且 Z?U,则入 XZ→YZ 为 F 所蕴涵

    答案:D
    解析:
    从已知的一些函数依赖,可以推导出另外一些函数依赖,这就需要一系列推理规则。函数依赖的推理规则最早出现在1974年W.W.Armstrong 的论文里,这些规则常被称作“Armstrong 公理”设U 是关系模式R 的属性集,F 是R 上成立的只涉及U 中属性的函数依赖集。函数依赖的推理规则有以下三条:自反律:若属性集Y 包含于属性集X,属性集X 包含于U,则X→Y 在R 上成立。(此处X→Y是平凡函数依赖)增广律:若X→Y 在R 上成立,且属性集Z 包含于属性集U,则XZ→YZ 在R 上成立。传递律:若X→Y 和 Y→Z在R 上成立,则X →Z 在R 上成立。其他的所有函数依赖的推理规则可以使用这三条规则推导出。

  • 第3题:

    给定关系模式R,其中U为关系R的属性集,F是U上的一组函数依赖,X、Y、Z、W是U上的属性组。下列结论正确的是( )。

    A.若wx→y,y→Z成立,则X→Z成立
    B.若wx→y,y→Z成立,则W→Z成立
    C.若X→y,WY→z成立,则xw→Z成立
    D.若X→y,Z?U成立,则X→YZ成立

    答案:C
    解析:
    函数依赖的公理系统(Armstrong)设关系模式R,U是关系模式R的属性全集,F是关系模式R的一个函数依赖集。对于R来说有以下的:自反律:若Y?X?U,则X→Y为F所逻辑蕴含增广律:若X→Y为F所逻辑蕴含,且Z?U,则XZ→YZ为F所逻辑蕴含传递律:若X→Y和Y→Z为F所逻辑蕴含,则X→Z为F所逻辑蕴含合并规则:若X→Y,X→Z,则X→YZ为F所蕴涵伪传递率:若X→Y,WY→Z,则XW→Z为F所蕴涵分解规则:若X→Y,Z?Y,则X→Z为F所蕴涵

  • 第4题:

    设函数,(u)可导,z=f(sin y-sin x)+xy,则=__________.


    答案:
    解析:

  • 第5题:

    设有关系模式R(U,F),其中U={X,Y,Z},F={X→Z,Y→X },则该模式最高满足()


    正确答案:2NF

  • 第6题:

    单选题
    设函数z=z(x,y)由方程z=e2x-3z+2y确定,则3∂z/∂x+(∂z/∂y)=(  )。
    A

    2

    B

    1

    C

    e

    D

    0


    正确答案: A
    解析:
    构造函数F(x,y,z)=z-e2x3z-2y。则∂z/∂x=-Fx′/Fz′=2e2x3z/(1+3e2x3z),∂z/∂y=-Fy′/Fz′=2/(1+3e2x3z),故3∂z/∂x+(∂z/∂y)=2。

  • 第7题:

    填空题
    设函数z=z(x,y)由方程z=e2x-3z+2y确定,则3∂z/∂x+∂z/∂y=____。

    正确答案: 2
    解析:
    方程两边同时对x求偏导,则∂z/∂x=e2x3z(2-3∂z/∂x),可得∂z/∂x=2e2x3z/(1+3e2x3z)。同理∂z/∂y=e2x3z(-3∂z/∂y)+2,可得∂z/∂y=2/(1+3e2x3z),所以3∂z/∂x+∂z/∂y=6e2x3z/(1+3e2x3z)+2/(1+3e2x3z)=2(1+3e2x3z)/(1+3e2x3z)=2。

  • 第8题:

    填空题
    设z=f(xy,x/y)+g(y/x),其中f、g均可微,则∂z/∂x=____。

    正确答案: yf1′+f2′/y-yg′/x2
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,g′为函数g对x的导数。则∂z/∂x=∂f(xy,x/y)/∂x+∂g(y/x)/∂x=f1′y+f2′·(1/y)+g′·(-y/x2)=f1′y+f2′/y-yg′/x2

  • 第9题:

    单选题
    设函数z=z(x,y)由方程z=e2x-3z+2y确定,则3∂z/∂x+(∂z/∂y)=(  )。
    A

    0

    B

    1

    C

    2

    D

    4


    正确答案: B
    解析:
    构造函数F(x,y,z)=z-e2x3z-2y。则∂z/∂x=-Fx′/Fz′=2e2x3z/(1+3e2x3z),∂z/∂y=-Fy′/Fz′=2/(1+3e2x3z),故3∂z/∂x+(∂z/∂y)=2。

  • 第10题:

    单选题
    设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=(  )。
    A

    -yf1′/x-xf2′/y

    B

    -yf1′/x+xf2′/y

    C

    2(-yf1′/x+xf2′/y)

    D

    2(-yf1′/x-xf2′/y)


    正确答案: A
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,则∂z/∂x=f1′·(-y/x2)+f2′·(1/y),∂z/∂y=f1′·(1/x)+f2′·(-x/y2),x∂z/∂x-y∂z/∂y=2(-yf1′/x+xf2′/y)。

  • 第11题:

    填空题
    设函数z=z(x,y)由方程F(x-az,y-bz)=0所给出,其中F(u,v)任意可微,则a∂z/∂x+(b∂z/∂y)=____。

    正确答案: 1
    解析:
    根据偏导数的求解方法可知∂z/∂x=-Fx′/Fz′=-F1′/(―aF1′―bF2′),∂z/∂y=-Fy′/Fz′=-F2′/(―aF1′―bF2′),故a∂z/∂x+(b∂z/∂y)=-(aF1′+bF2′)/(―aF1′―bF2′)=1。

  • 第12题:

    填空题
    设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则fx′(0,1,-1)=____。

    正确答案: 1
    解析:
    构造函数F(x,y,z)=x+y+z+xyz,则有∂z/∂x=-Fx′/Fz′=-(1+yz)/(1+xy),(∂z/∂x)|01,-1=0,又由f(x,y,z)=exyz2 ,得fx′=exyz2+exy·2z·zx′,代入(0,1,-1),得fx′(0,1,-1)=e0×1×(-1)2+e0×1×2×(-1)×0=1。

  • 第13题:

    ● 给定关系模式 ( ) F U R , ,其中U 为关系R属性集,F 是U 上的一组函数依赖,

    若 Y X → , (42) 是错误的,因为该函数依赖不蕴涵在F中。

    (42)

    A. Z Y → 成立,则 Z X →

    B. Z X → 成立,则 YZ X →

    C. U Z ? 成立,则 YZ X →

    D. Z WY → 成立,则 Z XW →


    正确答案:C

  • 第14题:

    设关系模式R<U,F>,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指( )。

    A.若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵
    B.若X→Y,X→Z,则X→YZ为F所蕴涵
    C.若X→Y,WY→Z,则XW→Z为F所蕴涵
    D.若X→Y为F所蕴涵,且Z?U,则XZ→YZ为F所蕴涵

    答案:C
    解析:
    本题考查关系数据库基础知识。从已知的一些函数依赖,可以推导出另外一些函数依赖,这就需要一系列推理规则。函数依赖的推理规则最早出现在1974年W.W.Armstrong的论文里,这些规则常被称作“Armstrong公理”。选项A“若X→Y,Y→Z为F所蕴涵,则H为F所蕴涵”符合Armstrong公理系统的传递率。选项B“若X→Y,X→Z,则X→YZ为F所蕴涵”符合Armstrong公理系统的合并规则。选项C“若X→Y,WY→Z,则XW→Z为F所蕴涵”符合Armstrong公理系统的伪传递率。选项D“若X→Y为F所蕴涵,且K?U,则XZ→YZ为F所蕴涵”符合Armstrong公理系统的增广率。

  • 第15题:

    设函数z=z(x,y)由方程确定,其中F为可微函数,且F'2≠0,则=

    A.Ax
    B.z
    C.-x
    D.-z

    答案:B
    解析:

  • 第16题:

    给定关系模式R,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指( )。

    A.若X→Y,X→Z,则X→YZ为F所蕴涵
    B.若X→Y,WY→Z,则XW→Z为F所蕴涵
    C.若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵
    D.若Ⅹ→Y为F所蕴涵,且Z U,则XZ→YZ为F所蕴涵

    答案:B
    解析:
    从已知的一些函数依赖,可以推导出另外一些函数依赖,这就需要一系列推理规则。函数依赖的推理规则最早出现在1974年W.W.Armstrong的论文里,这些规则常被称作"Armstrong公理".合并规则:若X→Y,X→Z同时在R上成立,则X→YZ在R上也成立。分解规则:若X→W在R上成立,且属性集Z包含于W,则X→Z在R上也成立。伪传递规则:若X→Y在R上成立,且WY→Z,则XW→Z。

  • 第17题:

    单选题
    设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则fx′(0,1,-1)=(  )。
    A

    e

    B

    2e

    C

    0

    D

    1


    正确答案: B
    解析:
    构造函数F(x,y,z)=x+y+z+xyz,则有∂z/∂x=-Fx′/Fz′=-(1+yz)/(1+xy),(∂z/∂x)|01,-1=0,又由f(x,y,z)=exyz2,得fx′=exyz2+exy·2z·zx′,
    代入(0,1,-1),得fx′(0,1,-1)=e0×1×(-1)2+e0×1×2×(-1)×0=1。

  • 第18题:

    单选题
    设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=(  )。
    A

    -yf1′/x+xf2′/y

    B

    2(-yf1′/x+xf2′/y)

    C

    -yf1′/x+2xf2′/y

    D

    -yf1′/x+f2′/y


    正确答案: A
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,则∂z/∂x=f1′·(-y/x2)+f2′·(1/y),∂z/∂y=f1′·(1/x)+f2′·(-x/y2),x∂z/∂x-y∂z/∂y=2(-yf1′/x+xf2′/y)。

  • 第19题:

    单选题
    设函数z=z(x,y)由方程F(x-az,y-bz)=0所给出,其中F(u,v)任意可微,则a∂z/∂x+(b∂z/∂y)=(  )。
    A

    1

    B

    2

    C

    3

    D

    4


    正确答案: A
    解析:
    根据偏导数的求解方法可知∂z/∂x=-Fx′/Fz′=-F1′/(―aF1′―bF2′),∂z/∂y=-Fy′/Fz′=-F2′/(―aF1′―bF2′),故a∂z/∂x+(b∂z/∂y)=-(aF1′+bF2′)/(―aF1′―bF2′)=1。

  • 第20题:

    单选题
    设方程x+z=yf(x2-z2)(其中f可微)确定了z=z(x,y),则z∂z/∂x+y∂z/∂y=(  )。
    A

    x

    B

    y

    C

    z

    D

    yf(x2-y2


    正确答案: C
    解析:
    由x+z=yf(x2-z2),可得∂z/∂x=-(1-y·2xf′)/(1+2yzf′),∂z/∂y=-(-f)/(1+2yzf′),故有(z∂z/∂x)+(y∂z/∂y)=(x-yf+2xyzf′+yf)/(1+2yzf′)=x。

  • 第21题:

    填空题
    设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=____。

    正确答案: 2(-yf1′/x+xf2′/y)
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,则∂z/∂x=f1′·(-y/x2)+f2′·(1/y),∂z/∂y=f1′·(1/x)+f2′·(-x/y2),x∂z/∂x-y∂z/∂y=2(-yf1′/x+xf2′/y)。

  • 第22题:

    单选题
    利用变量替换u=x,v=y/x一定可以把方程x∂z/∂x+y∂z/∂y=z化为新方程(  )。
    A

    u∂z/∂u=z

    B

    ∂z/∂v=z

    C

    u∂z/∂v=z

    D

    v∂z/∂u=z


    正确答案: B
    解析:
    由x∂z/∂x+y∂z/∂y=z,得∂z/∂x=(∂z/∂u)·1+(∂z/∂v)(-y/x2),∂z/∂y=(1/x)(∂z/∂v)。
    故x∂z/∂x+y∂z/∂y=x∂z/∂u-(y/x)(∂z/∂v)+(y/x)(∂z/∂v)=x∂z/∂u=z。
    而u=x,故u∂z/∂u=z。

  • 第23题:

    单选题
    设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=(  )。
    A

    2(yf1′/x+xf2′/y)

    B

    2(yf1′/x-xf2′/y)

    C

    2(-yf1′/x+xf2′/y)

    D

    2(-yf1′/x-xf2′/y)


    正确答案: C
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,则∂z/∂x=f1′·(-y/x2)+f2′·(1/y),∂z/∂y=f1′·(1/x)+f2′·(-x/y2),x∂z/∂x-y∂z/∂y=2(-yf1′/x+xf2′/y)。

  • 第24题:

    单选题
    由方程f(y/x,z/x)=0确定z=z(x,y)(f可微),则x∂z/∂x+y∂z/∂y=(  )。
    A

    -z

    B

    z

    C

    -y

    D

    y


    正确答案: C
    解析:
    由f(y/x,z/x)=0可得,∂z/∂x=-[f1′·(-y/x2)+f2′·(-z/x2)]/(f2′/x),∂z/∂y=-(f1′/x)/(f2′/x),则x∂z/∂x+y∂z/∂y=-(―yf1′/x―zf2′/x+yf1′/x)/(f2′/x)=z。