单选题设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为(  )。A F2(x)B F(x)F(y)C 1-[1-F(x)]2D [1-F(x)][1-F(y)]

题目
单选题
设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为(  )。
A

F2(x)

B

F(x)F(y)

C

1-[1-F(x)]2

D

[1-F(x)][1-F(y)]


相似考题
参考答案和解析
正确答案: B
解析:
FZ(x)=P{Z≤x}=P{max(X,Y)≤x}=P{X≤x,Y≤x}=P{X≤x}·P{Y≤x}=F2(x),故应选A。
更多“单选题设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为(  )。A F2(x)B F(x)F(y)C 1-[1-F(x)]2D [1-F(x)][1-F(y)]”相关问题
  • 第1题:

    设F是属性组U上的一组函数依赖,下列叙述正确的是

    A.若Y∈U则X→Y为F所逻辑蕴含

    B.若X∈U则X→Y为F所逻辑蕴含

    C.若X→Y为F所逻辑蕴含,且Z∈U则X→YZ为F所逻辑蕴含

    D.若X→Y及X→Z为F所逻辑蕴含,则X→Z为F所逻辑蕴含


    正确答案:D
    解析:本题主要考查了对函数依赖的几个推理规则。 自反律:若YXU则X→Y为F所逻辑蕴含;增广律:若X→Y为F所逻辑蕴含,且ZU则XZ→YZ为F所逻辑蕴含;传递律:若X→Y及Y→Z为F所逻辑蕴含,则X→Z为F所逻辑蕴含。

  • 第2题:

    设二维随机变量(X,Y)的联合密度函数为f(x,y)=
      (1)求随机变量X,Y的边缘密度函数;
      (2)判断随机变量X,Y是否相互独立;
      (3)求随机变量Z=X+2Y的分布函数和密度函数.


    答案:
    解析:

  • 第3题:

    设(X,Y)的联合分布函数为F(x,y)=则P(max{X,y}>1)=_______.


    答案:
    解析:
    由Fx(x)=F(x,+∞)=得X~E(2),同理Y~E(3),且X,Y独立.P(max{X,Y}>1)=P(X>1Y>1)=1-P(X≤1,Y≤1)=1-P(X≤1)P(Y≤1)

  • 第4题:

    设二维随机变量(X,Y)的联合密度函数为f(x,y)=则a=_______,P(X>Y)=_______.


    答案:
    解析:

  • 第5题:

    设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为



    A.AF^2(x)
    B.F(x)F(y)
    C.1-[1-F(x)]^2
    D.[1-F(x)][1-F(y)]

    答案:A
    解析:
    随机变量Z=max(X,Y)的分布函数Fz(x)应为Fz(x)=P{Z≤x},由此定义不难推出Fz(x).【求解】故答案应选(A).
    【评注】不难验证(B)F(x)F(y)恰是二维随机变量(X,Y)的分布函数.(C)1-[1-F(x)]^2则是随机变量min(X,Y)的分布函数.(D)[1-F(x)][1-F(y)]本身不是分布函数,因它不满足分布函数的充要条件.

  • 第6题:

    设二维随机变量(X,Y)在区域上服从均匀分布,令
      (Ⅰ)写出(X,Y)的概率密度;
      (Ⅱ)请问U与X是否相互独立?并说明理由;
      (Ⅲ)求Z=U+X的分布函数F(z).


    答案:
    解析:

  • 第7题:

    设连续型随机变量X的密度函数为f(x),分布函数为F(x).如果随机变量X与-X分布函数相同,则().



    A.F(z)=F(-x)
    B.F(x)=F(-x)
    C.F(X)=F(-x)
    D.f(x)=f(-x)

    答案:C
    解析:

  • 第8题:

    设随机变量X,Y相互独立,它们的分布函数为Fx(x),F(y),则Z=min{X,Y}的分布函数为().


    答案:C
    解析:
    FZ(z)=P(Z≤z)=P(min{X,Y}≤z)=1-P(min{X,Y}>z)  =1-P(X>z,Y>z)=1-P(X>z)P(Y>z)
      =1-【1-P(X≤z)】【1-P(Y≤z)】=1-【1-FX(z)】【1-FY(z)】,选(C).

  • 第9题:

    设随机变量X,Y相互独立,且X~N,Y~N,则与Z=Y-X同分布的随机变量是().

    A.X-Y
    B.X+Y
    C.X-2Y
    D.Y-2X

    答案:B
    解析:
    Z=Y-X~N(1,1),因为X-Y~N(-1,1),X+Y~N(1,1).X-2Y~N,Y-2X~N,所以选(B).

  • 第10题:

    设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()

    • A、F2(x)
    • B、F(x)F(y)
    • C、1-[1-F(x)]2
    • D、[1-F(x)][1-F(y)]

    正确答案:A

  • 第11题:

    填空题
    设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=____。

    正确答案: 2(-yf1′/x+xf2′/y)
    解析:
    设f1′为函数f(u,v)对第一中间变量的偏导,f2′为函数f(u,v)对第二中间变量的偏导,则∂z/∂x=f1′·(-y/x2)+f2′·(1/y),∂z/∂y=f1′·(1/x)+f2′·(-x/y2),x∂z/∂x-y∂z/∂y=2(-yf1′/x+xf2′/y)。

  • 第12题:

    填空题已知随机变量X与Y的联合分布函数为F(x,y),则 P(1X≤2,6Y≤7)是____


    答案:F(2.7)+F(1,6)—F(1.7)—F(2,6)

    解析:F(x,y)=P(x≤x,Y≤y) ∴P(x_1x≤x_2 ,y_1y≤y_2) =F(x_2,y_2)-F(x_1,y_2)-F(x_2,y_1)+F(X_2,y_2) 7∴PS1X≤2 ,6y≤73=F(2.7)+F(1,6)—

  • 第13题:

    设关系模式R<U,F>,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指( )。

    A.若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵
    B.若X→Y,X→Z,则X→YZ为F所蕴涵
    C.若X→Y,WY→Z,则XW→Z为F所蕴涵
    D.若X→Y为F所蕴涵,且Z?U,则XZ→YZ为F所蕴涵

    答案:C
    解析:
    本题考查关系数据库基础知识。从已知的一些函数依赖,可以推导出另外一些函数依赖,这就需要一系列推理规则。函数依赖的推理规则最早出现在1974年W.W.Armstrong的论文里,这些规则常被称作“Armstrong公理”。选项A“若X→Y,Y→Z为F所蕴涵,则H为F所蕴涵”符合Armstrong公理系统的传递率。选项B“若X→Y,X→Z,则X→YZ为F所蕴涵”符合Armstrong公理系统的合并规则。选项C“若X→Y,WY→Z,则XW→Z为F所蕴涵”符合Armstrong公理系统的伪传递率。选项D“若X→Y为F所蕴涵,且K?U,则XZ→YZ为F所蕴涵”符合Armstrong公理系统的增广率。

  • 第14题:

    设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.


    答案:
    解析:

  • 第15题:

    设随机变量X和Y相互独立,且分布函数为Fx(x)=,Fy(y)=,令U=X+Y,则U的分布函数为_______.


    答案:
    解析:

  • 第16题:

    设X的分布函数为F(x)=且Y=X^2-1,则E(XY)=_______.


    答案:1、-0.6
    解析:
    随机变量X的分布律为,E(XY)=E【X(X^2-1)】=E(X^3-X)=E(X^3)-E(X),因为E(X^3)=-8×0,3+1×0.5+8×0.2=-0.3,E(X)=-2X0.3+1×0.5+2×0.2=0.3,所以E(XY)=-0.6

  • 第17题:

    设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为

    A.A0
    B.1
    C.2
    D.3

    答案:D
    解析:

  • 第18题:

    设随机变量X,Y相互独立,它们的分布函数为Fx(x),FY(y),则Z=max{X,Y)的分布函数为().


    答案:B
    解析:
    FZ(z)=P(Z≤z)=P(max{X,Y}≤z)=P(X≤z,Y≤z)=P(X≤z)P(Y≤z)-FX(z)FY(z),选(B).

  • 第19题:

    设随机变量X,Y的分布函数分别为F1(x),F2(x),为使得F(x)=aF1(x)+bF2(x)为某一随机变量的分布函数,则有().


    答案:D
    解析:
    根据性质F(+∞)=1,得正确答案为(D).

  • 第20题:

    设随机变量(X,Y)的分布函数为F(x,y),用它表示概率P(-X
    A.1-F(-a,y)
    B.1-F(-a,y-0)
    C.F(+∞,y-0)-F(-a,y-0)
    D.F(+∞,y)-F(-a,y)

    答案:C
    解析:

  • 第21题:

    设随机变量X的概率密度和分布函数分别是f(x)和F(x),且f(x)=f(-x),则对任意实数a,有F(-a)=()

    • A、1/2-F(a)
    • B、1/2+F(a)
    • C、2F(a)-1
    • D、1-F(a)

    正确答案:D

  • 第22题:

    单选题
    设X,Y是相互独立的随机变量,其分布函数分别为FX(x)、FY(y),则Z=min(X,Y)的分布函数是(  )。
    A

    FZ(z)=max[FX(x),FY(y)]

    B

    FZ(z)=min[FX(x),FY(y)]

    C

    FZ(z)=1-[1-FX(x)][1+FY(y)]

    D

    FZ(z)=FY(y)


    正确答案: D
    解析:
    FZ(z)=P{Z≤z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[1-FX(x)][1-FY(y)],故应选C。

  • 第23题:

    单选题
    设X~N(2,22),其概率密度函数为f(x),分布函数F(x),则(  )。
    A

    P{X≤0}=P{X≥0}=0.5

    B

    f(-x)=1-f(x)

    C

    F(x)=-F(-x)

    D

    P{X≥2}=P{X<2}=0.5


    正确答案: B
    解析:
    该正态分布的密度函数的图像关于x=μ=2对称,故P{X≥2}=P{X<2}=0.5,故应选D。