单选题具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性方程是(  )。A y‴-y″-y′+y=0B y‴+y″-y′-y=0C y‴-6y″+11y′-6y=0D y‴-2y″-y′+2y=0

题目
单选题
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性方程是(  )。
A

y‴-y″-y′+y=0

B

y‴+y″-y′-y=0

C

y‴-6y″+11y′-6y=0

D

y‴-2y″-y′+2y=0


相似考题
更多“单选题具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性方程是(  )。A y‴-y″-y′+y=0B y‴+y″-y′-y=0C y‴-6y″+11y′-6y=0D y‴-2y″-y′+2y=0”相关问题
  • 第1题:

    微分方程y''-6y'+9y=0在初始条件下的特解为( )


    答案:D
    解析:
    提示:这是二阶常系数线性齐次方程。

  • 第2题:

    下列微分方程是线性微分方程的是()。

    • A、x(y’)2+y=ex
    • B、xy"+xy’+y=cosx
    • C、y3y"+y’+2y=0
    • D、y"+2y"+y2=0

    正确答案:B

  • 第3题:

    以为特解的二阶线性常系数齐次微分方程是()。

    • A、y"-2y'-3y=0
    • B、y"+2y'-3y=0
    • C、y"-3y'+2y=0
    • D、y"-2y'-3y=0

    正确答案:B

  • 第4题:

    单选题
    以y1=ex,y2=e2xcosx为特解的最低阶数的常系数线性齐次方程为(  )。
    A

    y‴-5y″-9y′-5y=0

    B

    y‴-5y″-5y′-5y=0

    C

    y‴-5y″+9y′-5y=0

    D

    y‴-5y″+5y′-5y=0


    正确答案: A
    解析:
    由题意可知,r1=1,r23=2±i是其特征方程的根,则最低的齐次方程的阶数为3,则其特征方程为(r-1)(r-2-i)(r-2+i)=0,即(r-1)(r2-4r+5)=0,r3-5r2+9r-5=0。故满足题意的齐次方程为y‴-5y″+9y′-5y=0。

  • 第5题:

    单选题
    以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是(  )。[2012年真题]
    A

    y″-2y′-3y=0

    B

    y″+2y′-3y=0

    C

    y″-3y′+2y=0

    D

    y″-2y′-3y=0


    正确答案: B
    解析:
    因y1=ex,y2=e3x是特解,故r1=1,r2=-3是特征方程的根,因而特征方程r2+2r-3=0。故二阶线性常系数齐次微分方程是:y″+2y′-3y=0。

  • 第6题:

    问答题
    设二阶线性微分方程y″+P(x)y′+Q(x)y=f(x)的三个特解是y1=x,y2=ex,y3=e2x,试求此方程满足条件y(0)=1,y′(0)=3的特解。

    正确答案:
    由题意可知,Y1=ex-x、Y2=e2x-x是原方程对应齐次方程的两个线性无关的解[因(ex-x)/(e2x-x)≠常数],故原方程的通解为y=C1(ex-x)+C2(e2x-x)+x,由y(0)=1,y′(0)=3,得C1=-1,C2=2。故所求原方程的特解为y=-(ex-x)+2(e2x-x)+x=2e2x-ex
    解析: 暂无解析

  • 第7题:

    单选题
    具有待定特解形式为y=A1x+A2+B1ex的微分方程是下列中哪个方程()?
    A

    y″+y′-2y=2+ex

    B

    y″-y′-2y=4x+2ex

    C

    y″-2y′+y=x+ex

    D

    y″-2y′=4+2ex


    正确答案: C
    解析: 暂无解析

  • 第8题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″+2y′+2y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′-2y=0

    D

    y″+2y′+2y=0


    正确答案: A
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第9题:

    具有待定特解形式为y=A1x+A2+B1ex的微分方程是下列中哪个方程()?

    • A、y″+y′-2y=2+ex
    • B、y″-y′-2y=4x+2ex
    • C、y″-2y′+y=x+ex
    • D、y″-2y′=4+2ex

    正确答案:B

  • 第10题:

    在塔里木油田公司压井管汇现场待令工况正确的是()。

    • A、Y2常关Y3常关Y4常开
    • B、Y2常关Y3常关Y4常关
    • C、Y2常开Y3常关Y4常开
    • D、Y2常关Y3常开Y4常关

    正确答案:B

  • 第11题:

    单选题
    以为特解的二阶线性常系数齐次微分方程是()。
    A

    y"-2y'-3y=0

    B

    y"+2y'-3y=0

    C

    y"-3y'+2y=0

    D

    y"-2y'-3y=0


    正确答案: C
    解析: 暂无解析

  • 第12题:

    单选题
    具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性方程是(  )。
    A

    y‴-y″-y′+y=0

    B

    y‴+y″-y′-y=0

    C

    y‴-6y″+11y′-6y=0

    D

    y‴-2y″-y′+2y=0


    正确答案: C
    解析:
    由题设可知,该齐次方程的通解为y=(C1+C2x)ex+C3ex,则r=-1是特征方程的二重特征根,r=1是特征方程的单根,故其特征方程为(r+1)2(r-1)=0即r3+r2-r-1=0。故所求三阶常系数线性齐次方程为y‴+y″-y′-y=0。

  • 第13题:

    单选题
    (2012)以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:()
    A

    y″-2y′-3y=0

    B

    y″+2y′-3y=0

    C

    y″-3y′+2y=0

    D

    y″+2y′+y=0


    正确答案: D
    解析: 暂无解析

  • 第14题:

    单选题
    函数y=C1ex+C2e-2x+xex满足的一个微分方程是(  )。
    A

    y″-y′-2y=3xex

    B

    y″-y′-2y=3ex

    C

    y″+y′-2y=3xex

    D

    y″+y′-2y=3ex


    正确答案: D
    解析:
    由函数y=C1ex+C2e-2x+xex结合解的结构可知,y1=ex及y2=e-2x是所求非齐次方程对应齐次方程的解,y3=xex是所求非齐次方程的一个特解。故对应特征方程的根为r1=1,r2=-2,特征方程为(r-1)(r+2)=r2+r-2=0。则齐次方程为y″+y′-2y=0。假设所求方程为y″+y′-2y=f(x),将y3=xex代入得f(x)=3ex。则所求方程为y″+y′-2y=3ex

  • 第15题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″-y′+y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′=0

    D

    y′+2y=0


    正确答案: A
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第16题:

    单选题
    微分方程y″-2y′+y=0的两个线性无关的特解是(  )。[2016年真题]
    A

    y1=x,y2=ex

    B

    y1=ex,y2=ex

    C

    y1=ex,y2=xex

    D

    y1=ex,y2=xex


    正确答案: D
    解析:
    本题中,二阶常系数线性微分方程的特征方程为:r2-2r+1=0,解得:r1=r2=1,故方程的通解为:y2=ex(c1+c2x),则两个线性无关解为c1ex、c2xex(c1、c2为常数)。