单选题以下关于二元函数的连续性的说法正确是(  )。A 若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续B 若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续C 若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续D 以上说法都不对

题目
单选题
以下关于二元函数的连续性的说法正确是(  )。
A

若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续

B

若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续

C

若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续

D

以上说法都不对


相似考题
更多“单选题以下关于二元函数的连续性的说法正确是(  )。A 若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续B 若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续C 若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续D 以上说法都不对”相关问题
  • 第1题:

    若函数f (x)在点x0间断,g(x)在点x0连续,则f (x)g(x)在点x0:
    (A)间断 (B)连续 (C)第一类间断(D)可能间断可能连续


    答案:D
    解析:
    解:选D。
    这道题可以用举例子的方法来判断。
    f (x)g(x)=0在点处间断。

  • 第2题:

    若函数z=f(x,y)在点P0(x0,y0)处可微,则下面结论中错误的是(  )。



    答案:D
    解析:
    二元函数z=f(x,y)在点(x0,y0)处可微,可得到如下结论:①函数在点(x0,y0)处的偏导数一定存在,C项正确;②函数在点(x0,y0)处一定连续,AB两项正确;可微,可推出一阶偏导存在,但一阶偏导存在不一定一阶偏导在P0点连续,也有可能是可去或跳跃间断点,故D项错误。

  • 第3题:

    函数f(x,y)在点P0(x0,y0)处有一阶偏导数是函数在该点连续的(  )。

    A、必要条件
    B、充分条件
    C、充分必要条件
    D、既非充分又非必要条件

    答案:D
    解析:

  • 第4题:

    若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微


    正确答案:错误

  • 第5题:

    对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?

    • A、必要条件而非充分条件
    • B、充分条件而非必要条件
    • C、充分必要条件
    • D、既非充分又非必要条件

    正确答案:D

  • 第6题:

    下列结论不正确的是()。

    • A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续
    • B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导
    • C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微
    • D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

    正确答案:C

  • 第7题:

    单选题
    函数z=f(x,y)在P0(x0,y0)处可微分,且f′(x0,y0)=0,fy′(x0,y0)=0,则f(x,y)在P0(x0,y0)处有什么极值情况?()
    A

    必有极大值

    B

    必有极小值

    C

    可能取得极值

    D

    必无极值


    正确答案: D
    解析: 暂无解析

  • 第8题:

    判断题
    若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微
    A

    B


    正确答案:
    解析: 暂无解析

  • 第9题:

    单选题
    y=f(x)是方程y″-2y′+4y=0的一个解,若f(x0)>0,f′(x0)=0,则函数f(x)(  )。
    A

    在x0点取得极大值

    B

    在x0的某邻域单调增加

    C

    在x0点取得极小值

    D

    在x0的某邻域单调减少


    正确答案: D
    解析:
    由f′(x0)=0代入y″-2y′+4y=0可得y″(x0)=-4y(x0)<0。又f′(x0)=0,故函数y=f(x)在x0处取得极大值。

  • 第10题:

    判断题
    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.
    A

    B


    正确答案:
    解析: 暂无解析

  • 第11题:

    单选题
    设f(x,y)与φ(x,y)均为可微函数,且φy′(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是(  )。
    A

    若fx′(x0,y0)=0,则fy′(x0,y0)=0

    B

    若fx′(x0,y0)=0,则fy′(x0,y0)≠0

    C

    若fx′(x0,y0)≠0,则fy′(x0,y0)=0

    D

    若fx′(x0,y0)≠0,则fy′(x0,y0)≠0


    正确答案: A
    解析:
    设z=f(x,y)=f(x,y(x)),由题意可知∂z/∂x=fx′+fy′·(dy/dx)=0。
    又φ(x,y)=0,则dy/dx=-φx′/φy′。故fx′-(φx′/φy′)fy′=0。又φy′≠0,则fx′φy′=φx′fy′。所以当fx′≠0时fy′≠0。

  • 第12题:

    单选题
    可微函数f(x,y)在点(x0,y0)取得极小值,下列结论正确的是(  )。
    A

    f(x0,y)在y=y0处的导数等于零

    B

    f(x0,y)在y=y0处的导数大于零

    C

    f(x0,y)在y=y0处的导数小于零

    D

    f(x0,y)在y=y0处的导数不存在


    正确答案: D
    解析:
    由题意可知,fx′(x0,y0)=fy′(x0,y0)=0。则当x=x0时,f(x0,y)是一元可导函数,且它在y=y0处取得极小值。故f(x0,y)在y=y0处的导数为0。

  • 第13题:

    下列命题正确的是()

    A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
    B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
    C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
    D.若函数f(x)在点x0处连续,则f'(x0)一定存在

    答案:C
    解析:
    根据函数在点x0处取极值的必要条件的定理,可知选项C是正确的.

  • 第14题:

    函数y=f(x) 在点x=x0处取得极小值,则必有:

    A. f'(x0)=0
    B.f''(x0)>0
    C. f'(x0)=0且f''(x0)>0
    D.f'(x0)=0或导数不存在

    答案:D
    解析:
    提示 已知y=f(x)在x=x0处取得极小值,但在题中f(x)是否具有一阶、二阶导数,均未说明,从而答案A、B、C就不一定成立。答案D包含了在x=x0可导或不可导两种情况,如y= x 在x=0处导数不存在,但函数y= x 在x=0取得极小值。

  • 第15题:

    函数z=f(x,y)处可微分,且fx'(x0,y0)=0,fy'(x0,:y0)=0,则f (x,y)在P0(x0,y0)处有什么极值情况?

    A.必有极大值
    B.必有极小值
    C.可能取得极值
    D.必无极值

    答案:C
    解析:
    提示:z=f(x,y)在p0(x0,y0)可微,且fx'(x0,y0)=0,fy'(x0,y0)=0,是取得极值的必要条件,因而可能取得极值。

  • 第16题:

    若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()

    • A、连续
    • B、偏导数存在
    • C、偏导数连续
    • D、切平面存在

    正确答案:C

  • 第17题:

    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.


    正确答案:错误

  • 第18题:

    下列结论不正确的是()。

    • A、y=f(x)在点x0处可微,则f(x)在点x0处连续
    • B、y=f(x)在点x0处可微,则f(x)在点x0处可导
    • C、y=f(x)在点x0处连续,则f(x)在点x0处可微
    • D、y=f(x)在点x0处可导,则f(x)在点x0处连续

    正确答案:C

  • 第19题:

    单选题
    以下关于二元函数的连续性的说法正确是(  )。
    A

    若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续

    B

    若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续

    C

    若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续

    D

    以上说法都不对


    正确答案: D
    解析:
    根据二元函数f(x,y)在(x0,y0)出连续的定义可知B项正确。

  • 第20题:

    单选题
    设y=f(x)满足关系式y″-2y′+4y=0,且f(x0)>0,f′(x0)=0,则f(x)在x0点处(  )。
    A

    取得极大值

    B

    取得极小值

    C

    在x0点某邻域内单调增加

    D

    在x0点某邻域内单调减少


    正确答案: D
    解析:
    由于f(x0)>0,f′(x0)=0,有f″(x0)-2f′(x0)+4f(x0)=f″(x0)+4f(x0)=0,所以有f″(x0)<0,故f(x)在点x0处取得极大值,故应选(A)。

  • 第21题:

    单选题
    考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。
    A

    ②⇒③⇒①

    B

    ③⇒②⇒①

    C

    ③⇒④⇒①

    D

    ③⇒①⇒④


    正确答案: C
    解析:
    根据二元函数连续、可微及可导的关系可知②⇒③⇒①、②⇒③⇒④。

  • 第22题:

    单选题
    二元函数z=f(x,y)在点(x0,y0)处存在一阶连续偏导数是它在此点处可微的(  )。
    A

    充分条件

    B

    必要条件

    C

    充要条件

    D

    以上都不是


    正确答案: C
    解析:
    一阶偏导数在(x0,y0)点连续,则函数在(x0,y0)处可微;而函数在(x0,y0)处可微,其一阶偏导数不一定连续。

  • 第23题:

    单选题
    若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()
    A

    连续

    B

    偏导数存在

    C

    偏导数连续

    D

    切平面存在


    正确答案: C
    解析: 由可微一定连续,可微一定存在偏导数知(A)、(B)正确,由偏导数存在知切平面存在,(D)正确。但可微不一定偏导数连续,(C)不正确

  • 第24题:

    单选题
    对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?
    A

    必要条件而非充分条件

    B

    充分条件而非必要条件

    C

    充分必要条件

    D

    既非充分又非必要条件


    正确答案: B
    解析: 暂无解析