问答题求过点M(-1,0,1)且垂直于直线(x-2)/3=(y+1)/(-4)=z/1又与直线(x+1)/1=(y-3)/1=z/2相交的直线方程。

题目
问答题
求过点M(-1,0,1)且垂直于直线(x-2)/3=(y+1)/(-4)=z/1又与直线(x+1)/1=(y-3)/1=z/2相交的直线方程。

相似考题
参考答案和解析
正确答案:
过点M(-1,0,1)且垂直于直线(x-2)/3=(y+1)/(-4)=z/1的平面方程为3x-4y+z+2=0。该平面与直线(x+1)/1=(y-3)/1=z/2的交点为(12,16,26),则该交点与点M(-1,0,1)形成的直线方程为(x+1)/13=y/16=(z-1)/25,即为所求。
解析: 暂无解析
更多“求过点M(-1,0,1)且垂直于直线(x-2)/3=(y+1)/(-4)=z/1又与直线(x+1)/1=(y-3)/1=”相关问题
  • 第1题:

    过点(0,2,4)且与两平面x+2z=1和y-3z=2平行的直线方程是( ).

    A.x/0=(y-2)/1=(z-4)/(-3)
    B.x/1=(y-2)/0=(z-4)/2
    C.x/(-2)=(y-2)/(-3)=(z-4)/1
    D.x/(-2)=(y-2)/3=(z-4)/1

    答案:D
    解析:
    (1,0,2)×(0,1,-3)=(-2,3,1)=> D

  • 第2题:

    设平面方程x+y+Z+1=0,直线的方程是l-x=y+1= z,则直线与平面:
    (A)平行 (B)垂直 (C)重合 (L)相交但不垂直


    答案:D
    解析:
    解:选D
    所以直线与平面不垂直。又1x(-1) + 1x1+1x1=1≠0,所以直线与平面不平行。

  • 第3题:

    过点M(3,-2,1)且与平行的直线方程是:


    答案:D
    解析:
    提示:利用两向量的向量积求出直线L的方向向量。

  • 第4题:


    A.(x+1)(y+1)=2,z=3
    B.(x+1)(y-1)=2,z=3
    C.(x+1)(y-1)=-2,z=3
    D.(x+1)(y+1)=-2,z=3

    答案:B
    解析:

  • 第5题:

    过点P(2,-3)且在两坐标轴上截距相等的直线方程是( )

    A.χ+y+1=0或3χ+2y=0
    B.χ-y-1=0或3χ+2y=0
    C.χ+y-1=0或3χ+2y=0
    D.χ-y+1=0或3χ+2y=0

    答案:A
    解析:
    【考情点拨】本题主要考查的知识点为直线的截距. 【应试指导】若直线在两坐标轴上截距相等,将直线方程转化为截距式容易判别、选项A对.选项B错,直线选项C错,直线选项D错,直线

  • 第6题:

    已知平面π过点M1(1,1,0),M2(0,0,1),M3(0,1,1),则与平面π垂直且过点(1,1,1)的直线的对称方程为:



    答案:A
    解析:
    提示 求出过M1,M2,M3三点平面的法线向量。



    @##

  • 第7题:

    已知直线/:ax+y=1在矩阵对应的变换作用下变为直线Z:x+by=l
    (1)求实数a,b的值;
    (2)若点P(x。,yo)在直线Z求点P的坐标。


    答案:
    解析:
    (1)
    (2)

  • 第8题:

    已知两直线l1:x/2=(y+2)/-2=(1-x)/-1和l2:(x-1)/4=(y-3)/M=(z+1)/-2相互垂直,则M的值为:()

    • A、3
    • B、5
    • C、-2
    • D、-4

    正确答案:B

  • 第9题:

    过点(-1,0,1)且与平面x+y+4z+19=0平行的平面方程为()。

    • A、x+y+4z-3=0
    • B、2x+y+z-3=0
    • C、x+2y+z-19=0
    • D、x+2y+4z-9=0

    正确答案:A

  • 第10题:

    单选题
    已知两直线l1:x/2=(y+2)/-2=(1-x)/-1和l2:(x-1)/4=(y-3)/M=(z+1)/-2相互垂直,则M的值为:()
    A

    3

    B

    5

    C

    -2

    D

    -4


    正确答案: A
    解析: 暂无解析

  • 第11题:

    单选题
    已知两直线l1:(x-4)/2=(y+1)/3=(z+2)/5和l2:(x+1)/-3=(y-1)/2=(z-3)/4,则它们的关系是()
    A

    两条相交的直线

    B

    两条异面直线

    C

    两条平行但不重合的直线

    D

    两条重合的直线


    正确答案: B
    解析: 暂无解析

  • 第12题:

    单选题
    过点(-1,0,1)且与平面x+y+4z+19=0平行的平面方程为()。
    A

    x+y+4z-3=0

    B

    2x+y+z-3=0

    C

    x+2y+z-19=0

    D

    x+2y+4z-9=0


    正确答案: C
    解析: 暂无解析

  • 第13题:

    过点(1,-2,3)且平行于z轴的直线的对称式方程是(  )。



    答案:B
    解析:
    由题意可得此直线的方向向量为(0,0,1),又过点(1,-2,3),所以该直线的方程为

  • 第14题:

    过点M(3,-2,1)且与直线L :平行的直线方程是:


    答案:D
    解析:
    直线L是平面χ - y- z +1 = 0和平面2χ+ y - 3z + 4 = 0的交线,直线L的方向向量

  • 第15题:

    设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω.
      (Ⅰ)求曲面∑的方程;
      (Ⅱ)求Ω的形心坐标.


    答案:
    解析:
    【分析】利用定义求旋转曲面∑的方程;利用三重积分求Ω的形心坐标.

  • 第16题:

    过点(2,0,-1)且垂直于xOy坐标面的直线方程是(  )。


    答案:C
    解析:
    垂直于xOy面的直线的方向向量为(0,0,1),由于过点(2,0,-1),则直线的点向式方程为:(x-2)/0=y/0=(z+1)/1。

  • 第17题:

    过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是( )。

    A.(x-3)2+(y+1)2=4
    B.(x+3)2+(y-1)2=4
    C.(x-1)2+(y-1)2=4
    D.(x+1)2+(y+1)2=4

    答案:C
    解析:

  • 第18题:

    试求通过点Mo(一1,0,4),垂直于平面Ⅱ:3x一4y-10=0,且与直线
    平行的平面方程。


    答案:
    解析:
    平面Ⅱ的法向量m=(3-4,1),直线Z的方向向量l=(3,l,2),所以所求平面的法向

  • 第19题:

    求过点M(3,-2,1)且与直线平行的直线方程是()。


    答案:D
    解析:
    *

  • 第20题:

    已知两直线l1:(x-4)/2=(y+1)/3=(z+2)/5和l2:(x+1)/-3=(y-1)/2=(z-3)/4,则它们的关系是()

    • A、两条相交的直线
    • B、两条异面直线
    • C、两条平行但不重合的直线
    • D、两条重合的直线

    正确答案:B

  • 第21题:

    过点(4,-1,3)且平行于直线L:(x-3)/2=y=(z-1)/5的直线方程为().

    • A、(x-4)/2=(y+1)/0=(z-3)/5
    • B、(x-4)/2=(y+1)/1=(z-3)/5
    • C、(x+4)/2=(y-1)/0=(z+3)/5
    • D、(x+4)/2=(y-1)/1=(z+3)/5

    正确答案:B

  • 第22题:

    单选题
    过点(-1,2,3)垂直于直线x/4=y/5=z/6且平行于平面7x+8y+9z+10=0的直线是(  )。
    A

    (x+1)/1=(y-2)/(-2)=(z-3)/1

    B

    (x+1)/1=(y-2)/2=(z-3)/2

    C

    (x+1)/(-1)=(y-2)/(-2)=(z-3)/1

    D

    (x-1)/1=(y-2)/(-2)=(z-3)/1


    正确答案: A
    解析:
    直线x/4=y/5=z/6的方向向量为s=4,5,6,平面7x+8y+9z+10=0的法向量为n=7,8,9。显然ABC三项中的直线均过点(-1,2,3)。A项中直线的方向向量为s1=(1,-2,1),有s1⊥s,s1⊥n,可见A中直线与已知直线x/4=y/5=z/6垂直,与平面7x+8y+9z+10=0平行。

  • 第23题:

    问答题
    求过点M(-1,0,1)且垂直于直线(x-2)/3=(y+1)/(-4)=z/1又与直线(x+1)/1=(y-3)/1=z/2相交的直线方程。

    正确答案:
    过点M(-1,0,1)且垂直于直线(x-2)/3=(y+1)/(-4)=z/1的平面方程为3x-4y+z+2=0。该平面与直线(x+1)/1=(y-3)/1=z/2的交点为(12,16,26),则该交点与点M(-1,0,1)形成的直线方程为(x+1)/13=y/16=(z-1)/25,即为所求。
    解析: 暂无解析

  • 第24题:

    单选题
    过点(4,-1,3)且平行于直线L:(x-3)/2=y=(z-1)/5的直线方程为().
    A

    (x-4)/2=(y+1)/0=(z-3)/5

    B

    (x-4)/2=(y+1)/1=(z-3)/5

    C

    (x+4)/2=(y-1)/0=(z+3)/5

    D

    (x+4)/2=(y-1)/1=(z+3)/5


    正确答案: A
    解析: 暂无解析