单选题甲、乙两人同时从400米的环形路跑道的一点A背向出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,两人第三次相遇的地点与A点沿跑道上的最短距离是(  )A 166米B 176米C 224米D 234米

题目
单选题
甲、乙两人同时从400米的环形路跑道的一点A背向出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,两人第三次相遇的地点与A点沿跑道上的最短距离是(  )
A

166米

B

176米

C

224米

D

234米


相似考题
更多“甲、乙两人同时从400米的环形路跑道的一点A背向出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,两人第”相关问题
  • 第1题:

    甲、乙两人从400米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点与A点沿跑道上的最短距离是(  )。

    A.166米B.176米

    C.224米D.234米


    第三次相遇,二人共跑400*3米,8分钟=480秒
    甲每秒比乙多行0.1米,8分钟多行0.1*480米
    故:乙8分钟行(400*3-0.1*480)/2=576米
        576-400=176
        400-176=224
           176224
    故:两人第三次相遇的地点与A点沿跑道上的最短距离是176米

  • 第2题:

    周长为400米的圆形跑道上, 有相距100米的A、B两点, 甲乙两人分别从A、B两点同时相背而跑, 两人相遇后, 乙即转身与甲同向而跑步, 当甲跑到A时, 乙恰好跑到B。如果以后甲、乙跑的速度方向都不变,那么甲追上乙时,甲从出发开始,共跑了( )米。

    A.600

    B.800

    C.900

    D.1000


    正确答案:D
    13.D【解析】乙从相遇点C跑回B点时,甲从C过B到A,他比乙多跑了100米,乙从B到C时, 甲从A到C, 说明A到C比B到C多100米, 跑道周长400米, 所以8到C是100米,A到C是200米,甲跑200米,比乙多100米。甲追上乙要多跑300=400—100(米),所以甲要跑200X 3=600(米),加上开始跑的一圈,甲共跑600+400=1000(米)。

  • 第3题:

    跑马场一周之长为1080米。甲、乙两人骑自行车从同一地点同时出发,朝同一方向行驶,经过54分后,甲追上了乙。如果甲每分减少50米,乙每分增加30米,从同一地点同时背向而行,则经过3分后两人相遇。原来甲、乙两人每分各行多少米?( )

    A.200 180

    B.360 240

    C.240 200

    D.240 180


    正确答案:A

  • 第4题:

    甲、乙两人从环形跑道的A点同时出发背向而行,6分钟后两人第一次相遇,相遇后两人的速度各增加10米每分钟,5分钟后两人第二次相遇,问环形跑道的长度为多少米()

    A、12
    B、15
    C、18
    D、21

    答案:A
    解析:
    本题考查相遇追及。设两人速度之和为v,环形跑道的长度为S,则S=6v=5×(v+10+10),解得S=600。故本题答案为A选项。????
    【知识点】相遇追及

  • 第5题:

    甲,乙两人同时同地绕400米的循环形跑道同向而行,甲每秒钟跑8米,乙每秒钟跑9米,多少秒后两人第三次相遇?( )

    A. 400
    B. 800
    C. 1200
    D. 1600

    答案:C
    解析:
    (9-8)×X=400×3,解得X=1200,故答案为C。

  • 第6题:

    甲、乙两人同时从同一地点出发沿同一环形跑道进行健身锻炼,甲跑步,乙走路。若甲追上乙所需时间是两人相向而行相遇所需时间的3倍,则甲、乙的速度之比是:

    A.3︰1
    B.5︰2
    C.2︰1
    D.3︰2

    答案:C
    解析:

  • 第7题:

    甲和乙在长400米的环形跑道上匀速跑步,如两人同时从同一点出发相向而行.则第一次相遇的位置距离出发点有l50米的路程;如两人同时从同一点出发同向而行,跑得快的人第一次追上另一人时跑了(  )米。

    A.600
    B.800
    C.1000
    D.1200

    答案:C
    解析:
    由题意可假设甲的速度为150米/秒,则乙的速度为250米/秒,甲、乙速度差为100米/秒,乙追上甲需要400÷100=4(,秒),则所求为250×4=1000(米)。

  • 第8题:

    甲乙两人同时从起点同向在400米环形跑道上跑出,已知甲速度是乙的2倍,问当甲乙两人第三次相遇的时候(从起点跑出的时候算第一次相遇),甲跑了多少米?()

    • A、1200
    • B、1600
    • C、1800
    • D、2400

    正确答案:B

  • 第9题:

    甲、乙两人从4.0米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点与A点沿跑道上的最短距离是( )。

    • A、166米
    • B、176米
    • C、224米
    • D、234米

    正确答案:B

  • 第10题:

    单选题
    甲、乙两人同时从400米的环形路跑道的一点A背向出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,两人第三次相遇的地点与A点沿跑道上的最短距离是(  )
    A

    166米

    B

    176米

    C

    224米

    D

    234米


    正确答案: D
    解析:
    由题意可设,乙每秒钟走x米,则甲为(x+0.1)米。8×60×x+8×60×(x+0.1)=400×3,解得x=1.2,8分钟后,甲乙二人相遇时乙走的路程为480×1.2=576米,距离A点的最短距离为576-400=176米。

  • 第11题:

    单选题
    甲乙两人同时从起点同向在400米环形跑道上跑出,已知甲速度是乙的2倍,问当甲乙两人第三次相遇的时候(从起点跑出的时候算第一次相遇),甲跑了多少米?()
    A

    1200

    B

    1600

    C

    1800

    D

    2400


    正确答案: A
    解析: 本题可转化为环线上的追及问题。从起点出发时算第一次相遇;因为甲乙二人是同时同向出发,且甲的速度快,所以当甲第一次追上乙的时候,是甲乙的第二次相遇;此时,甲比乙多走一周的路程。设甲的速度为2v,乙的速度为v,甲第一次追上乙所用的时间为t,则有:(2v-v)t=400米,即vt=400;当甲第一次追上乙后,二者继续向前跑,当甲第二次追上乙时是甲乙的第三次相遇;由以上分析可知,从出发到甲乙第三次相遇所用的时间为2t,则甲所跑的路程为2v×2t=4vt=1600米,故选B。

  • 第12题:

    甲、乙两人同时从400米的环形路跑道的一点A背向出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,两人第三次相遇的地点与A点沿跑道上的最短距离是( )。

    A.166米

    B.176米

    C.224米

    D.234米


    正确答案:B
    B【解析】设乙每秒钟走X米,则甲为X+0.1。可知公式为:8×60×X+8×60×(X+0.1)=400×3,解得X=1.2,故8分钟后,甲乙二人相遇时乙走的路程为1.2×60×8=576(米),距离A点的最短距离为576-400=176(米)。

  • 第13题:

    甲、乙两人都以不变的速度在环形路上跑步,如果同时同地出发,相向而行,每隔2min相遇一次;如果同向而行,每隔6min相遇一次,已知甲比乙跑得快,甲乙二人每分钟各跑多少圈?

  • 第14题:

    甲、乙二人同时同地绕400米的循环形跑道同向而行,甲每秒钟跑8米,乙每秒钟跑9米,多少秒后甲、乙二人第三次相遇?( )

    A.400

    B.800

    C.1200

    D.1600


    正确答案:C

  • 第15题:

    甲、乙两人从相距600米的A、B两地同时出发,相向而行,到达A、B地以后立即返回,如此反复。已知甲的速度为9米/秒,乙的速度为6米/秒,两人每次相遇以后速度增加一倍,则117秒内两人会相遇多少次?( )

    A.3
    B.4
    C.5
    D.6

    答案:C
    解析:
    甲、乙两人第一次相遇花了600÷(9+6)=40秒,第一次到第二次相遇之间的路程和为2个AB全程.速度和为第一次相遇的2倍,花了600×2÷(9×2+6×2)=40秒,以后每次相遇的路程和均为2个AB全程.速度和为前一次相遇的2倍,因此相遇时间为前一次相遇时间的一半,117=40+40+20+10+5+2,最后的2秒小于5÷2=2.5,两人并没有相遇,因此相遇次数应该为5次。

  • 第16题:

    甲乙二人沿环形跑道从同一地点同时背向开始跑步,35秒后两人相遇。已知甲跑一圈需要60秒,乙跑一圈需要多少秒?

    A.77
    B.84
    C.91
    D.96

    答案:B
    解析:
    第一步,本题考查行程问题的环形相遇问题,用相遇公式和基本行程公式解题。

  • 第17题:

    甲乙两人从同一起跑线上绕300米环形跑道跑步,甲每秒钟跑6米,乙每秒钟跑4米,问第二次追上乙时甲跑了几圈?(? )
    A9
    B8
    C7
    D6


    答案:D
    解析:

  • 第18题:

    甲、乙二人绕着圆形操场跑道散步,甲顺时针走,乙逆时针走,两人在跑道A处同时出发,甲每分钟走90米,乙每分钟走60米,当甲、乙两人在跑道B处相遇时,乙加快了速度,甲在原地停留4分钟后保持原来的速度继续往前走,最后甲、乙二人仍在A处相遇。已知该操场的周长为1800米,那么相遇后,乙的速度变为每分钟( )米。

    A.70
    B.80
    C.90
    D.100

    答案:C
    解析:
    第一步,本题考查行程问题。
    第二步,甲、乙在B处相遇,根据S=(+)×t代入数据:1800=(90+60)×t,解得t=12(分钟),则甲走了90×12=1080米,乙走了60×12=720米。
    第三步,要回到A处:甲要再走720米,用时720÷90=8分钟,加上原地停留的4分钟,共用时8+4=12分钟,故乙加速后再走1080米也需用时12分钟,加速后的速度为每分钟1080÷12=90米。

  • 第19题:

    甲、乙二人同时同地绕400米的环形跑道背向而行,甲每秒钟跑6米,乙每秒钟跑2米,则多少秒后甲、乙二人会第一次相遇?()

    • A、40
    • B、50
    • C、60
    • D、70

    正确答案:B

  • 第20题:

    单选题
    甲、乙二人同时同地绕400米的环形跑道背向而行,甲每秒钟跑6米,乙每秒钟跑2米,则多少秒后甲、乙二人会第一次相遇?()
    A

    40

    B

    50

    C

    60

    D

    70


    正确答案: D
    解析: 环形相遇问题,400÷(6+2)=50秒,选择B项。

  • 第21题:

    单选题
    一个长方形的跑道,宽50米,长100米,甲乙两人在跑道上跑步,若两人同时同地背向出发,经30秒后相遇,若两人同时同地同向出发,经过75秒钟后,甲追上乙。现在两人在同一地点顺时针跑步,乙提前1分钟出发,问再经过多少秒甲才能追上乙?()
    A

    35

    B

    40

    C

    45

    D

    50


    正确答案: A
    解析: 暂无解析