单选题初值问题y″=e2y+ey,y(0)=0,y′(0)=2的解为(  )。A y+ln(1+ey)=x-ln2B y-ln(1+ey)=x-ln2C y-ln(1+ey)=x-2D y+ln(1+ey)=x-2

题目
单选题
初值问题y″=e2y+ey,y(0)=0,y′(0)=2的解为(  )。
A

y+ln(1+ey)=x-ln2

B

y-ln(1+ey)=x-ln2

C

y-ln(1+ey)=x-2

D

y+ln(1+ey)=x-2


相似考题
更多“单选题初值问题y″=e2y+ey,y(0)=0,y′(0)=2的解为(  )。A y+ln(1+ey)=x-ln2B y-ln(1+ey)=x-ln2C y-ln(1+ey)=x-2D y+ln(1+ey)=x-2”相关问题
  • 第1题:

    若二阶常系数线性齐次微分方程y"+ay'+by=0的通解为y=(C1+C2x)e^x,则非齐次方程y"+ay'+by=x满足条件y(0)=2,y'(0)=0的解为y=________.


    答案:1、y=-xe^x+x+2.
    解析:

  • 第2题:

    曲线y=x3-4x+2在点(1,-l)处的切线方程为()

    A.x-y-2=0
    B.x-y=0
    C.x+y=0
    D.27+y-2=0

    答案:C
    解析:

  • 第3题:

    曲线y=x3-4x+2在点(1,-1)处的切线方程为(  )

    A.x-y-2-0
    B.x-y=0
    C.x+y=0
    D.x+y-2=0

    答案:C
    解析:

  • 第4题:

    单选题
    解方程时,若设,则原方程可化为(  ).
    A

    3y2+5y-4=0

    B

    3y2+5y-10=0

    C

    3y2+5y-2=0

    D

    3y2+5y+2=0


    正确答案: A
    解析: 暂无解析

  • 第5题:

    单选题
    初值问题y″=e2y+ey,y(0)=0,y′(0)=2的解为(  )。
    A

    y-ln(1+ey)=x+ln2

    B

    y+ln(1+ey)=x-ln2

    C

    y+ln(1+ey)=x+ln2

    D

    y-ln(1+ey)=x-ln2


    正确答案: D
    解析:
    将微分方程y″=e2y+ey两边乘以2y′,得2y′y″=(e2y+ey)2y′,d(y′2)=2(e2y+ey)dy。两边积分得y′2=2e2y+ey+C。将y(0)=0,y′(0)=2代入上式,得C=1,故y′=1+ey,则有dy/(1+ey)=dx。积分可得y-ln(1+ey)=x+C1,将y(0)=0代入上式,得C1=-ln2。故方程的解为y-ln(1+ey)=x-ln2

  • 第6题:

    填空题
    若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=____。

    正确答案: -xex+x+2
    解析:
    由题意可知,r=1是已知齐次方程对应的特征方程的二重根,则该特征方程为(r-1)2=r2-2r+1=0,齐次方程为y″-2y′+y=0设y*=Ax+B为已知非齐次方程y″-2y′+y=x的特解,代入y″-2y′+y=x得0-2A+Ax+B=x,则A=1,B=2A=2。故已知非齐次方程的通解为y=(C1+C2x)ex+x+2。又y(0)=2,y′(0)=0,代入以上通解得C1=0,C2=-1。故所求方程特解为y=-xex+x+2。

  • 第7题:

    单选题
    (2012)以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:()
    A

    y″-2y′-3y=0

    B

    y″+2y′-3y=0

    C

    y″-3y′+2y=0

    D

    y″+2y′+y=0


    正确答案: D
    解析: 暂无解析

  • 第8题:

    单选题
    经过圆x2+2x+y2=0的圆心,与直线x+y=0垂直的直线方程是()。
    A

    x+y+1=0

    B

    x-y-1=0

    C

    x+y-1=0

    D

    x-y+1=0


    正确答案: B
    解析: 圆x2+2x+y2=0的圆心是(-1,0),与直线x+y=0垂直的直线方程的斜率为1,可求得此直线方程为x-y+1=0。

  • 第9题:

    单选题
    过点(1,2)且与直线2x+y-3=0平行的直线方程为(  ).
    A

    2x+y-5=0

    B

    2y-x-3=0

    C

    2x+y-4=0

    D

    2x-y=0


    正确答案: C
    解析:
    设和2x+y-3=0平行的直线方程为2x+y+c=0,将(1,2)代人,则有2×1+2+c=0,得c=-4.

  • 第10题:

    单选题
    过点(一1,0,1)且与平面X+Y+4z+19=0平行的平面方程为()。
    A

    X+Y+42-3=0

    B

    2x+Y+z-3=0

    C

    X+2y+z-19=0

    D

    X+2y+42-9=0


    正确答案: B
    解析: 已知平面的法向量为n={1,1,4},由条件可取所求平面的法向量为以={1,1,4},所以所求平面方程为l×(x+1)+1×(y一0)+4×(z—1)=0,即x+y+4z-3=0。

  • 第11题:

    单选题
    垂直于x轴的动直线与过原点的曲线y=y(x)(x≥0,y≥0)以及x轴围成一个以[0,x]为底边的曲边梯形,其面积为y3(x).函数y(x)的隐函数形式是().
    A

    y2-x=0

    B

    y2+x=0

    C

    3y2-2x=0

    D

    2y-3x2=0


    正确答案: C
    解析: 暂无解析

  • 第12题:

    单选题
    若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=(  )。
    A

    xex+x+2

    B

    xex-x+2

    C

    -xex-x+2

    D

    -xex+x+2


    正确答案: C
    解析:
    由题意可知,r=1是已知齐次方程对应的特征方程的二重根,则该特征方程为(r-1)2=r2-2r+1=0,齐次方程为y″-2y′+y=0设y*=Ax+B为已知非齐次方程y″-2y′+y=x的特解,代入y″-2y′+y=x得0-2A+Ax+B=x,则A=1,B=2A=2。故已知非齐次方程的通解为y=(C1+C2x)ex+x+2。又y(0)=2,y′(0)=0,代入以上通解得C1=0,C2=-1。故所求方程特解为y=-xex+x+2。

  • 第13题:

    微分方程满足条件y(0)=0的解为y=________.


    答案:
    解析:
    微分方程的通解为.由初值条件y(0)=0得C=0.所以应填.

  • 第14题:


    A.x+y+2=0
    B.x-y+2=0
    C.x+y-2=0
    D.x-y-2=0

    答案:A
    解析:

  • 第15题:

    以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是:

    A. y''-2y'-3y=0
    B. y''+2y'-3y=0
    C. y''-3y'+2y=0
    D. y''+2y'+y=0

    答案:B
    解析:
    提示 y''-3y'+2y=0→r2+2r-3 = 0→r1=-3,r2=1,所以y1=ex,y2=e-3x,选项B的特解满足条件。

  • 第16题:

    单选题
    以y1=ex,y2=e2xcosx为特解的最低阶数的常系数线性齐次方程为(  )。
    A

    y‴-5y″-9y′-5y=0

    B

    y‴-5y″-5y′-5y=0

    C

    y‴-5y″+9y′-5y=0

    D

    y‴-5y″+5y′-5y=0


    正确答案: A
    解析:
    由题意可知,r1=1,r23=2±i是其特征方程的根,则最低的齐次方程的阶数为3,则其特征方程为(r-1)(r-2-i)(r-2+i)=0,即(r-1)(r2-4r+5)=0,r3-5r2+9r-5=0。故满足题意的齐次方程为y‴-5y″+9y′-5y=0。

  • 第17题:

    单选题
    若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=(  )。
    A

    xex+x2+2

    B

    -xex+x2+2

    C

    -xex+x+2

    D

    -xex+x


    正确答案: B
    解析:
    由题意可知,r=1是已知齐次方程对应的特征方程的二重根,则该特征方程为(r-1)2=r2-2r+1=0,齐次方程为y″-2y′+y=0设y*=Ax+B为已知非齐次方程y″-2y′+y=x的特解,代入y″-2y′+y=x得0-2A+Ax+B=x,则A=1,B=2A=2。故已知非齐次方程的通解为y=(C1+C2x)ex+x+2。又y(0)=2,y′(0)=0,代入以上通解得C1=0,C2=-1。故所求方程特解为y=-xex+x+2。

  • 第18题:

    单选题
    悬臂梁长度为l,取自由端为坐标原点,则求梁的挠曲线时确定积分常数的边界条件为()。
    A

    x=0、y=0;x=0、y¢=0

    B

    x=l、y=0;x=l、y¢=0

    C

    x=0、y=0;x=l、y¢=0

    D

    x=l、y=0;x=0、y¢=0


    正确答案: C
    解析: 暂无解析

  • 第19题:

    单选题
    设平面∏位于平面x-2y+z-2=0和平面x-2y+z-6=0之间,且将二平面间的距离分成1:3,则∏之方程为(  )。
    A

    x-2y+z-5=0或x-2y+z-3=0

    B

    x+2y+z+8=0

    C

    x+2y-4z=0

    D

    x-2y+z-8=0


    正确答案: A
    解析:
    本题采用排除法较为简单。由于B、C两项所给出的平面方程的各项系数与已知平面不同,故它们与已知平面不平行,则可排除B、C项;D项平面与已知平面平行,但是不在两平面之间(可由常数项-8∉(-2,-6)判断出)。

  • 第20题:

    填空题
    初值问题y″=e2y+ey,y(0)=0,y′(0)=2的解为____。

    正确答案: y-ln(1+ey)=x-ln2
    解析:
    将微分方程y″=e2y+ey两边乘以2y′,得2y′y″=(e2y+ey)2y′,d(y′2)=2(e2y+ey)dy。两边积分得y′2=2e2y+ey+C。将y(0)=0,y′(0)=2代入上式,得C=1,故y′=1+ey,则有dy/(1+ey)=dx。积分可得y-ln(1+ey)=x+C1,将y(0)=0代入上式,得C1=-ln2。故方程的解为y-ln(1+ey)=x-ln2

  • 第21题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″-y′+y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′=0

    D

    y′+2y=0


    正确答案: A
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第22题:

    单选题
    微分方程(ex+y+ex)dx+(ex+y-ey)dy=0的通解是(  )。
    A

    (1-ex)(1+ey)=C

    B

    (1+ex)(1-ey)=C

    C

    ey=C(1-ex)-1

    D

    ey=1-C(1+ex


    正确答案: B
    解析:
    ∫(exy+ex)dx=exy+ex+f(y),∫(exy-ey)dy=exy-ey+g(x),故f(y)=-ey,g(x)=ex。(exy+ex)dx+(exy-ey)dy=d(exy+ex-ey+C)。

  • 第23题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″+2y′+2y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′-2y=0

    D

    y″+2y′+2y=0


    正确答案: A
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。