参考答案和解析
正确答案: 静息电位:细胞膜处于安静状态时,由于钾离子外流,形成外正内负的稳定电位态。
动作电位:细胞受到阈刺激后产生的全面、可传导、不衰减的电流变化过程。
产生机制:上升支称去极化,由钠离子外流形成;下降支称复极化,由钾离子外流形成。
更多“什么是静息电位?什么是动作电位?简述动作电位的产生机制。”相关问题
  • 第1题:

    当低温、缺氧或代谢障碍等因素影响Na+-K+活动时,可使细胞的

    A、静息电位和动作电位幅度均不变
    B、静息电位减小,动作电位幅度增大
    C、静息电位增大,动作电位幅度增大
    D、静息电位减小,动作电位幅度减小
    E、静息电位增大,动作电位幅度减小

    答案:D
    解析:
    静息电位即静息时细胞膜内外两侧的电位差,相当于K+的平衡电位;动作电位是在接受刺激时细胞膜的连续电位变化过程,其上升值相当于Na+的平衡电位。低温、缺氧或代谢障碍等因素会抑制Na+-K+泵活动。故静息电位会减小,动作电位幅度也会减小

  • 第2题:


    A.静息电位增大,动作电位幅值不变
    B.静息电位增大,动作电位幅值增高
    C.静息电位不变,动作电位幅值降低
    D.静息电位不变,动作电位幅值增高
    E.静息电位减小,动作电位幅值增高

    答案:C
    解析:

  • 第3题:

    简述静息电位和动作电位产生的原因?


    正确答案: 1.安静时存在于细胞膜内外两侧的电位差称为静息电位。当组织一次有效刺激,在示波器上记录到一个迅速而短促的波动电位,即首先出现膜内、外的电位差迅速减少直至消失,进而出现两侧电位极性倒转,由静息时膜内为负,膜外为正,变成膜内为正,膜外为负。然而,膜电位的这种倒转是暂时的,它又很快恢复到受刺激前的静息状态。膜电位的这种迅速而短暂的波动称为动作电位。两种电位产生的共同原因是因为:生物电的形成依赖于细胞膜两侧离子分布的不均匀和膜对离子严格选择的通透性,及其不同条件下的变化,而膜电位形成的直接原因是离子的跨膜运动。
    2.静息电位产生的原因是静息时膜主要对钾离子有通透性和钾离子的外流所致。动作电位产生的原因则是起自于刺激对膜的去极化作用,动作电位上升支的形成是膜对纳离子通透性突然增大和纳离子的迅速内流所致。然而,膜对纳离子通透性增大是暂时的,当膜电位接近峰值电位水平时,纳离子通道突然关闭,膜对纳离子通透性回降,而对钾离子通透性增高,钾离子的外流又使膜电位恢复到内负外正的状态,形成动作电位下降支。

  • 第4题:

    什么是静息电位和动作电位?其形成原理是什么?


    正确答案:静息电位是指细胞未受到刺激时存在于细胞膜两侧的电位差,有时也称膜电位。形成原理是:细胞内外K+的不均衡分布和静息状态下细胞膜对K+的通透性是细胞在静息状态下保持极化状态的基础。静息状态下,膜内的K+浓度远高于膜外,且此时膜对K+的通透性高,结果K+以易化扩散的形式移向膜外,但带负电荷的大分子蛋白质不能通过膜而留在膜内。故随着K+的移出,膜内电位变负而膜外变正,当K+外移造成的电场力足以对抗K+继续外移时,膜内不再有K+的净移动,此时存在于膜内外两侧的电位即为静息电位。
    动作电位是细胞受到刺激时膜电位的变化过程。形成原理是:细胞受到刺激后,膜的通透性发生改变,对Na+的通透性突然增大,膜外高浓度的Na+在膜内负电位的吸引下以易化扩散的方式迅速内流,结果造成膜内负电位迅速降低。由于膜外Na+具有较高的浓度势能,当膜电位减小到0时仍可继续内移转为正电位直至膜内电位足以阻止Na+内移为止,此时的电位即为动作电位。

  • 第5题:

    什么是静息电位和动作电位?阐述其形成的原理。


    正确答案: 静息电位:神经元处于静息状态时细胞膜外正内负的电位差
    原因:钾离子外流,动作电位,神经元受到刺激而兴奋时细胞膜外负内正的电位差
    原因:钠离子内流

  • 第6题:

    什么是静息电位和动作电位?它们是怎样形成的?


    正确答案:静息时,质膜两侧存在着外正内负的电位差称为静息电位(restingpotential,RP)。安静状态下细胞内外离子的分布不均匀,在细胞外液中Na+、Cl-、Ca2+浓度比细胞内液要高,细胞内液中K+、有机负离子浓度比细胞外液要多,这主要是由于质膜对各种物质的选择性通透和主动转运而形成和维持的;此外,安静时细胞膜对K+有较大的通透性,对Na+、Cl-也有一定通透性,而对其它离子的通透性极低;故K+能顺浓度梯度移向膜外,而其它离子不能或甚少移动。随着K+的移出,就会出现膜内变负而膜外变正的状态,即静息电位。可见,静息电位主要是由K+外流形成的,非常接近于K+的平衡电位。在静息电位的基础上,给细胞一个适当的刺激,可触发其产生可传播的膜电位波动,称为动作电位(actionpotential,AP)。动作电位包括锋电位和后电位,后电位又分为负后电位(后去极化)和正后电位(后超极化)。细胞受刺激时,膜对Na+通透性突然增大,由于细胞膜外高Na+,且膜内静息电位时原已维持着的负电位也对Na+内流起吸引作用→Na+迅速内流,先是造成膜内负电位的迅速消失,但由于膜外Na+的较高浓度势能,Na+继续内移,出现超射;故锋电位的上升支是Na+快速内流造成的,动力是顺电-化学梯度,条件是膜对Na+电导的迅速增大,接近于Na+的平衡电位。此后,由于Na+通道激活后迅速失活,Na+电导减少;同时膜结构中电压门控性K+通道开放,K+电导增大;在膜内电-化学梯度的作用下,K+迅速外流,形成锋电位的下降支。负后电位一般认为是在复极时迅速外流的K+蓄积在膜外侧附近,暂时阻碍了K+外流所致。正后电位一般认为是生电性钠泵作用的结果。

  • 第7题:

    试述神经细胞静息电位、动作电位产生机制。


    正确答案: 静息电位是指细胞处于安静状态下,膜两侧电位差(膜内为负,膜外为正的跨膜电位)。产生原理:膜在静息状态时,对K+通透性大,对Na+通透性小;膜内K+浓度又远远高于膜外,则K+由细胞内向细胞外顺浓度差移动,因膜对有机负离子不能通透,使其留在膜内,这样,就产生了内负外正的电位差。当K+向外移动的化学力与阻止K+向外移动的电场力达到平衡时,则K+的净通透量等于零,此时的电位差称为钾的平衡电位。影响因素有细胞内外K+的浓度差及细胞膜上K+通道蛋白的状态。
    动作电位是指在静息电位的基础上,接受一个有效刺激,在细胞膜上发生一个短暂可逆的电位变化。其产生原理是,由于细胞受刺激后,膜上Na+通道开放,而K+通道关闭;膜外Na+浓度高于膜内,加上静息电位膜内负电的吸引,则Na+快速由膜外进入膜内,使膜内电位升高,并引起膜内外电位倒转,直到相当于Na+的平衡电位,即锋电位的顶端,形成去极相。而后,膜对Na+通透性降低,对K+通透性恢复,则膜内电位下降,重新回到静息电位水平,则为复极相。在一次动作电位之后,钠钾泵高效率地将Na+、K+离子复原,以保持兴奋细胞具有继续兴奋的能力。

  • 第8题:

    问答题
    什么是静息电位和动作电位?它们是怎样形成的?

    正确答案: 静息时,质膜两侧存在着外正内负的电位差称为静息电位(restingpotential,RP)。安静状态下细胞内外离子的分布不均匀,在细胞外液中Na+、Cl-、Ca2+浓度比细胞内液要高,细胞内液中K+、有机负离子浓度比细胞外液要多,这主要是由于质膜对各种物质的选择性通透和主动转运而形成和维持的;此外,安静时细胞膜对K+有较大的通透性,对Na+、Cl-也有一定通透性,而对其它离子的通透性极低;故K+能顺浓度梯度移向膜外,而其它离子不能或甚少移动。随着K+的移出,就会出现膜内变负而膜外变正的状态,即静息电位。可见,静息电位主要是由K+外流形成的,非常接近于K+的平衡电位。在静息电位的基础上,给细胞一个适当的刺激,可触发其产生可传播的膜电位波动,称为动作电位(actionpotential,AP)。动作电位包括锋电位和后电位,后电位又分为负后电位(后去极化)和正后电位(后超极化)。细胞受刺激时,膜对Na+通透性突然增大,由于细胞膜外高Na+,且膜内静息电位时原已维持着的负电位也对Na+内流起吸引作用→Na+迅速内流,先是造成膜内负电位的迅速消失,但由于膜外Na+的较高浓度势能,Na+继续内移,出现超射;故锋电位的上升支是Na+快速内流造成的,动力是顺电-化学梯度,条件是膜对Na+电导的迅速增大,接近于Na+的平衡电位。此后,由于Na+通道激活后迅速失活,Na+电导减少;同时膜结构中电压门控性K+通道开放,K+电导增大;在膜内电-化学梯度的作用下,K+迅速外流,形成锋电位的下降支。负后电位一般认为是在复极时迅速外流的K+蓄积在膜外侧附近,暂时阻碍了K+外流所致。正后电位一般认为是生电性钠泵作用的结果。
    解析: 暂无解析

  • 第9题:

    问答题
    简述静息电位和动作电位产生的原因?

    正确答案: 1.安静时存在于细胞膜内外两侧的电位差称为静息电位。当组织一次有效刺激,在示波器上记录到一个迅速而短促的波动电位,即首先出现膜内、外的电位差迅速减少直至消失,进而出现两侧电位极性倒转,由静息时膜内为负,膜外为正,变成膜内为正,膜外为负。然而,膜电位的这种倒转是暂时的,它又很快恢复到受刺激前的静息状态。膜电位的这种迅速而短暂的波动称为动作电位。两种电位产生的共同原因是因为:生物电的形成依赖于细胞膜两侧离子分布的不均匀和膜对离子严格选择的通透性,及其不同条件下的变化,而膜电位形成的直接原因是离子的跨膜运动。
    2.静息电位产生的原因是静息时膜主要对钾离子有通透性和钾离子的外流所致。动作电位产生的原因则是起自于刺激对膜的去极化作用,动作电位上升支的形成是膜对纳离子通透性突然增大和纳离子的迅速内流所致。然而,膜对纳离子通透性增大是暂时的,当膜电位接近峰值电位水平时,纳离子通道突然关闭,膜对纳离子通透性回降,而对钾离子通透性增高,钾离子的外流又使膜电位恢复到内负外正的状态,形成动作电位下降支。
    解析: 暂无解析

  • 第10题:

    问答题
    试述神经细胞静息电位、动作电位产生机制。

    正确答案: 静息电位是指细胞处于安静状态下,膜两侧电位差(膜内为负,膜外为正的跨膜电位)。产生原理:膜在静息状态时,对K+通透性大,对Na+通透性小;膜内K+浓度又远远高于膜外,则K+由细胞内向细胞外顺浓度差移动,因膜对有机负离子不能通透,使其留在膜内,这样,就产生了内负外正的电位差。当K+向外移动的化学力与阻止K+向外移动的电场力达到平衡时,则K+的净通透量等于零,此时的电位差称为钾的平衡电位。影响因素有细胞内外K+的浓度差及细胞膜上K+通道蛋白的状态。
    动作电位是指在静息电位的基础上,接受一个有效刺激,在细胞膜上发生一个短暂可逆的电位变化。其产生原理是,由于细胞受刺激后,膜上Na+通道开放,而K+通道关闭;膜外Na+浓度高于膜内,加上静息电位膜内负电的吸引,则Na+快速由膜外进入膜内,使膜内电位升高,并引起膜内外电位倒转,直到相当于Na+的平衡电位,即锋电位的顶端,形成去极相。而后,膜对Na+通透性降低,对K+通透性恢复,则膜内电位下降,重新回到静息电位水平,则为复极相。在一次动作电位之后,钠钾泵高效率地将Na+、K+离子复原,以保持兴奋细胞具有继续兴奋的能力。
    解析: 暂无解析

  • 第11题:

    单选题
    实验性减少细胞外液Na+浓度可导致(  )。
    A

    静息电位减小,动作电位不变

    B

    静息电位不变,动作电位幅度减小

    C

    静息电位和动作电位均减小

    D

    静息电位和动作电位均变大

    E

    静息电位变大,动作电位减小


    正确答案: D
    解析: 暂无解析

  • 第12题:

    问答题
    什么是动作电位?简述其产生机制。

    正确答案: 动作电位是细胞受刺激时细胞膜产生的一次可逆的,并且是可传导的电位变化。产生的机制为:
    1.阈刺激或阈上刺激使膜对钠离子的通透性增加,钠离子顺浓度剃度及电位差内流,使膜去极化,形成动作电位的上升支,
    2.钠离子通道失活而钾通道开放,钾离子外流,负极化形成动作电位的下降支,
    3.钠泵的作用,将进入膜内的钠离子泵出膜外同时将膜外多余的钾离子泵入膜内,恢复兴奋前时离子分布的浓度。
    解析: 暂无解析

  • 第13题:

    当人体处于低温环境下,体内的钠钾泵活动被严重影响,此时静息电位和动作电位是如何改变的?( )

    A.静息电位升高,动作电位升高
    B.静息电位下降,动作电位下降
    C.静息电位升高,动作电位下降
    D.静息电位下降,动作电位升高

    答案:B
    解析:
    钠钾泵活动受抑制时,影响细胞内外的钠钾离子的浓度差会导致静息电位和动作电位均下降。

  • 第14题:

    当人体处于低温环境下,体内的钠钾泵活动被严重影响,此时静息电位和动作电位是如何改变的?()

    • A、静息电位升高,动作电位升高
    • B、静息电位下降,动作电位下降
    • C、静息电位升高,动作电位下降
    • D、静息电位下降,动作电位升高

    正确答案:B

  • 第15题:

    降低细胞外液中Na+浓度时,发生的变化是()。

    • A、静息电位增大,动作电位幅值不变
    • B、静息电位增大,动作电位幅值增高
    • C、静息电位不变,动作电位幅值降低
    • D、静息电位不变,动作电位幅值增高
    • E、静息电位减小,动作电位幅值增高

    正确答案:C

  • 第16题:

    什么是动作电位?简述其发生的机制。


    正确答案:动作电位是指细胞受刺激时在静息电位基础上产生的可传布的点位变化。动作电位产生的机制与静息电位相似,都与细胞膜的通透性及离子转运有关。
    动作电位的产生可以分为以下几个阶段:
    1、去极化过程当细胞受刺激而兴奋时,膜对Na+通透性增大,对K+通透性减小,于是细胞外的Na+便会顺其波度梯度和电梯度向胞内扩散,导致膜内负电位减小,直至膜内电位比膜外高,形成内正外负的反极化状态。当促使Na+内流的浓度梯度和阻止Na+内流的电梯度,这两种拮抗力量相等时,Na+的净内流停止。因此,可以说动作电位的去极化过程相当于Na+内流所形成的电一化学平衡电位。
    2、复极化过程当细胞膜除极到峰值时,细胞膜的Na+通道迅速关闭,而对K+的通透性增大,于是细胞内的K+便顺其浓度梯度向细胞外扩散,导致膜内负电位增大,直至恢复到静息时的数值。

  • 第17题:

    什么是动作电位?简述其产生机制。


    正确答案:动作电位是细胞受刺激时细胞膜产生的一次可逆的,并且是可传导的电位变化。产生的机制为:
    1.阈刺激或阈上刺激使膜对钠离子的通透性增加,钠离子顺浓度剃度及电位差内流,使膜去极化,形成动作电位的上升支,
    2.钠离子通道失活而钾通道开放,钾离子外流,负极化形成动作电位的下降支,
    3.钠泵的作用,将进入膜内的钠离子泵出膜外同时将膜外多余的钾离子泵入膜内,恢复兴奋前时离子分布的浓度。

  • 第18题:

    什么是静息电位、动作电位?其形成原理是什么?


    正确答案: 静息电位是指细胞在静息状态下,细胞膜两侧的电位差。其形成原理主要是:①细胞内、外离子分布不均衡;胞内为高K、胞外为高Na、Cl。②静息状态时细胞膜对K通透性高:K扩散达到K电-化学平衡。③Na的扩散:由于细胞在静息状态时存在K-Na渗漏通道。④泵的活动也是形成Na-K静息电位的原因之一。动作电位是指细胞受到刺激产生兴奋时,发生短暂的、可逆的膜电位波动。

  • 第19题:

    K+渗漏通道的功能是()

    • A、维持静息膜电位
    • B、介导产生动作电位
    • C、起始动作电位后使膜恢复静息电位
    • D、检测声音震动

    正确答案:A

  • 第20题:

    问答题
    什么是静息电位?什么是动作电位?简述动作电位的产生机制。

    正确答案: 静息电位:细胞膜处于安静状态时,由于钾离子外流,形成外正内负的稳定电位态。
    动作电位:细胞受到阈刺激后产生的全面、可传导、不衰减的电流变化过程。
    产生机制:上升支称去极化,由钠离子外流形成;下降支称复极化,由钾离子外流形成。
    解析: 暂无解析

  • 第21题:

    问答题
    什么是静息电位和动作电位?阐述其形成的原理。

    正确答案: 静息电位:神经元处于静息状态时细胞膜外正内负的电位差
    原因:钾离子外流,动作电位,神经元受到刺激而兴奋时细胞膜外负内正的电位差
    原因:钠离子内流
    解析: 暂无解析

  • 第22题:

    问答题
    什么是静息电位和动作电位?其形成原理是什么?

    正确答案: 静息电位是指细胞未受到刺激时存在于细胞膜两侧的电位差,有时也称膜电位。形成原理是:细胞内外K+的不均衡分布和静息状态下细胞膜对K+的通透性是细胞在静息状态下保持极化状态的基础。静息状态下,膜内的K+浓度远高于膜外,且此时膜对K+的通透性高,结果K+以易化扩散的形式移向膜外,但带负电荷的大分子蛋白质不能通过膜而留在膜内。故随着K+的移出,膜内电位变负而膜外变正,当K+外移造成的电场力足以对抗K+继续外移时,膜内不再有K+的净移动,此时存在于膜内外两侧的电位即为静息电位。
    动作电位是细胞受到刺激时膜电位的变化过程。形成原理是:细胞受到刺激后,膜的通透性发生改变,对Na+的通透性突然增大,膜外高浓度的Na+在膜内负电位的吸引下以易化扩散的方式迅速内流,结果造成膜内负电位迅速降低。由于膜外Na+具有较高的浓度势能,当膜电位减小到0时仍可继续内移转为正电位直至膜内电位足以阻止Na+内移为止,此时的电位即为动作电位。
    解析: 暂无解析

  • 第23题:

    单选题
    降低细胞外液中Na+浓度时,发生的变化是(  )。
    A

    静息电位增大,动作电位幅值不变

    B

    静息电位增大,动作电位幅值增高

    C

    静息电位不变,动作电位幅值降低

    D

    静息电位不变,动作电位幅值增高

    E

    静息电位减小,动作电位幅值增高


    正确答案: D
    解析:
    静息电位主要是K+外流所致,是K+的平衡电位。而动作电位的升支主要是Na+内流所致。因此,降低细胞外液中Na+浓度时,静息电位不变,动作电位幅值降低。