若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是()。A、f(x,y)的极值点一定是f(x,y)的驻点B、如果P0是f(x,y)的极值点,则P0点处B2-AC<0C、如果P0是可微函数f(x,y)的极值点,则P0点处df=0D、f(x,y)的最大值点一定是f(x,y)的极大值点

题目

若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是()。

  • A、f(x,y)的极值点一定是f(x,y)的驻点
  • B、如果P0是f(x,y)的极值点,则P0点处B2-AC<0
  • C、如果P0是可微函数f(x,y)的极值点,则P0点处df=0
  • D、f(x,y)的最大值点一定是f(x,y)的极大值点

相似考题
更多“若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的”相关问题
  • 第1题:

    已知函数f(x,y)在点(0,0)的某个邻域内连续,且

    A.点(0,0)不是f(x,y)的极值点
    B.点(0,0)是f(x,y)的极大值点
    C.点(0,0)是f(x,y)的极小值点
    D.根据所给条件无法判断点(0,0)是否为f(x,y)的极值点

    答案:A
    解析:
    由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号。

  • 第2题:

    下列命题正确的是()

    A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
    B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
    C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
    D.若函数f(x)在点x0处连续,则f'(x0)一定存在

    答案:C
    解析:
    根据函数在点x0处取极值的必要条件的定理,可知选项C是正确的.

  • 第3题:

    设f(x,y)为连续函数,且满足,其中D是由x轴、y轴、所围成的闭区域


    答案:
    解析:

  • 第4题:

    设函数f(x)具有2阶连续导数,若曲线y=f(x)过点(0,0)且与曲线y=^x在点(1,2)处相切,则=________.


    答案:1、2(ln2-1)
    解析:

  • 第5题:

    若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是( )。
    A. f(x,y)的极值点一定是f(x,y)的驻点
    B.如果P0是f(x,y)的极值点,则P0点处B2-AC)
    C.如果P0是可微函数f(x,y)的极值点,则P0点处df=0
    D.f(x,y)的最大值点一定是f(x,y)的极大值点


    答案:C
    解析:
    提示:如果P0是可微函数f(x,y)的极值点,由极值存在必要条件,在P0点处有

  • 第6题:

    点(2,-2)是函数f(x,y)=x(4―x)―y(y+4)的()。

    • A、极小值点
    • B、非极值点
    • C、非极值驻点
    • D、极大值点

    正确答案:D

  • 第7题:

    下列结论正确的是().

    • A、x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件
    • B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件
    • C、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件
    • D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

    正确答案:D

  • 第8题:

    单选题
    以下关于二元函数的连续性的说法正确是(  )。
    A

    若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续

    B

    若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续

    C

    若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续

    D

    以上说法都不对


    正确答案: C
    解析:
    根据二元函数f(x,y)在(x0,y0)出连续的定义可知B项正确。

  • 第9题:

    单选题
    点(2,-2)是函数f(x,y)=x(4―x)―y(y+4)的()。
    A

    极小值点

    B

    非极值点

    C

    非极值驻点

    D

    极大值点


    正确答案: D
    解析: 暂无解析

  • 第10题:

    判断题
    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.
    A

    B


    正确答案:
    解析: 暂无解析

  • 第11题:

    单选题
    设函数z=f(x,y)的全微分为dz=xdx+ydy,则点(0,0)(  )。
    A

    不是f(x,y)的连续点

    B

    不是f(x,y)的极值点

    C

    是f(x,y)的极大值点

    D

    是f(x,y)的极小值点


    正确答案: D
    解析:
    函数的全微分为dz=xdx+ydy,则∂z/∂x=x,∂z/∂y=y,故∂2z/∂x2|00=1=A,∂2z/∂x∂y|00=0=B,∂2z/∂y2|00=1=C,又∂z/∂x|00=0,∂z/∂y|00=0,则B2-AC=-1<0,A>0。故(0,0)是函数f(x,y)的极小值点。

  • 第12题:

    单选题
    若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是()。
    A

    f(x,y)的极值点一定是f(x,y)的驻点

    B

    如果P0是f(x,y)的极值点,则P0点处B2-AC<0

    C

    如果P0是可微函数f(x,y)的极值点,则P0点处df=0

    D

    f(x,y)的最大值点一定是f(x,y)的极大值点


    正确答案: C
    解析: 暂无解析

  • 第13题:

    设函数f(x,y)=X2+Y2+xy+3,求f(x,y)的极值点与极值.


    答案:
    解析:

  • 第14题:

    求y=f(x)=2x3-3x2-12x+14的极值点和极值,以及函数曲线的凸凹性区间和拐点.


    答案:
    解析:
    y'=6x2-6x-12,y''=12x-6,令y'=0得驻点x1=-1,x2=2,当x2=2时,y''=18>0.所以f(z)在x=2处取极小值-6.当x1=-1时,y''<0.所以f(x)在x=-1处取极大值21.

  • 第15题:

    已知微分方程y’+y=f(x),其中f(x)是R上的连续函数.
      (Ⅰ)若f(x)=x,求方程的通解.
      (Ⅱ)若f(x)是周期为T的函数,证明:方程存在唯一的以T为周期的解.


    答案:
    解析:
    【解】(Ⅰ)若f(x)=x,则方程为y'+y=x通解为


    (Ⅱ)设y(x)为方程的任意解,则y'(x+T)+y(x+T)=f(x+T).
    而f(x)周期为T,有f(x+T)=f(x).又y'(x)+y(x)=f(x).
    因此y'(x+T)+y(x+T)-y'(x)-y(x)=0,有(e^x[y(x+T)-y(x)])'=0,
    即e^x[y(x+T)=y(x)]=C.取C=0得y(x+T)-y(x)=0,
    y(x)为唯一以T为周期的解.

  • 第16题:

    下列命题中,正确的是( ).

    A.单调函数的导函数必定为单调函数
    B.设f´(x)为单调函数,则f(x)也为单调函数
    C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点
    D.设f(x)在(a,b)内可导且只有一个极值点xo,f´(xo)=0

    答案:D
    解析:
    可导函数的极值点必定是函数的驻点,故选D.

  • 第17题:

    下列命题中正确的为()

    A.若xo为f(x)的极值点,则必有,f'(xo)=0
    B.若f'(xo)=0,则点xo必为f(x)的极值点
    C.若f'(xo)≠0,则点xo必定不为f(x)的极值点
    D.若f(x)在点xo处可导,且点xo为f(x)的极值点,则必有f'(xo)=0

    答案:D
    解析:
    由极值的必要条件知D正确.Y=|x|在x=0处取得极值,但不可导,知A与C不正确.y=x3在xo=0处导数为0,但Xo=0不为它的极值点,可知B不正确.因此选D.

  • 第18题:

    若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.


    正确答案:错误

  • 第19题:

    下列结论正确的是().

    • A、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件
    • B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件
    • C、z=(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件
    • D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

    正确答案:D

  • 第20题:

    单选题
    下列结论正确的是().
    A

    z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件

    B

    z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件

    C

    z=(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件

    D

    z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件


    正确答案: B
    解析: 解:由z=f(x,y)在点(x,y)可微分的定义知,函数在一点可微分必定函数在该点连续,故(D)正确. 本题也可由如下分析得出结论:多元函数存在偏导数与函数连续没有必然联系,故(A)、(B)都不正确;多元函数存在偏导数与函数可微分也并不等价.由函数可微分可推知函数的偏导数必定存在;但反过来,由函数的偏导数存在,不能得出函数可微分的结论,故(C)也不正确,因此,应选(D).

  • 第21题:

    单选题
    考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。
    A

    ②⇒③⇒①

    B

    ③⇒②⇒①

    C

    ③⇒④⇒①

    D

    ③⇒①⇒④


    正确答案: C
    解析:
    根据二元函数连续、可微及可导的关系可知②⇒③⇒①、②⇒③⇒④。

  • 第22题:

    单选题
    设偶函数f(x)具有二阶连续导数,且f″(0)≠0,则x=0(  )。
    A

    一定不是函数的驻点

    B

    一定是函数的极值点

    C

    一定不是函数的极值点

    D

    不能确定是否为函数的极值点


    正确答案: D
    解析:
    由偶函数f(x)在x=0处可导,可知f′(0)=0。又f″(0)≠0,由第二充分条件得x=0是极值点。

  • 第23题:

    单选题
    下列结论正确的是().
    A

    x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件

    B

    z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件

    C

    z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件

    D

    z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件


    正确答案: B
    解析: 暂无解析